A074150 Duplicate of A061925.
1, 2, 3, 6, 9, 14, 19, 26, 33, 42, 51, 62, 73, 86, 99, 114, 129, 146, 163, 182, 201, 222
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
G.f. = 1 + x + 3*x^2 + 3*x^3 + 5*x^4 + 5*x^5 + 7*x^6 + 7*x^7 + 9*x^8 + 9*x^9 + ... Complete coach system for (a composite) b = 2*n + 1 = 33: Sigma(33) ={[1; 5], [5, 7, 13; 2, 1, 2]} (the first two rows are here 1 and 5, 7, 13), a_{up}(33) = a(15) = 15. But 15 is not in the reduced residue system modulo 33, so the maximal (odd) a number is 13. For the prime b = 31, a_{up}(31) = a(14) = 15 appears as maximum of the first rows. - _Wolfdieter Lang_, Feb 19 2020
a109613 = (+ 1) . (* 2) . (`div` 2) a109613_list = 1 : 1 : map (+ 2) a109613_list -- Reinhard Zumkeller, Oct 27 2012, Feb 21 2011
A109613:=n->2*floor(n/2)+1; seq(A109613(k), k=0..100); # Wesley Ivan Hurt, Oct 22 2013
Flatten@ Array[{2# - 1, 2# - 1} &, 37] (* Robert G. Wilson v, Jul 07 2012 *) (# - Boole[EvenQ[#]] &) /@ Range[80] (* Alonso del Arte, Sep 11 2019 *) With[{c=2*Range[0,40]+1},Riffle[c,c]] (* Harvey P. Dale, Jan 02 2020 *)
A109613(n)=n>>1<<1+1 \\ Charles R Greathouse IV, Feb 24 2011
def a(n) : return( len( CuspForms( Gamma0( 5), 2*n + 4, prec=1). basis())); # Michael Somos, May 29 2013
((1 to 49) by 2) flatMap { List.fill(2)() } // _Alonso del Arte, Sep 11 2019
Equals row sums of the generating triangle: 1; 3, 1; 5, 1, 1; 7, 1, 3, 1; 9, 1, 5, 1, 1; 11, 1, 7, 1, 3, 1; 13, 1, 9, 1, 5, 1, 1; 15, 1, 11, 1, 7, 1, 3, 1; ... Example: a(5) = 17 = (9 + 1 + 5 + 1 + 1). - _Gary W. Adamson_, May 16 2010 The smallest 1-prolific permutations are 3142 and its symmetries; a(2) = 4. The smallest 2-prolific permutations are 3614725 and its symmetries; a(3) = 7. - _David Bevan_, Nov 30 2016
List([1..60],n->n+Int(n^2/2)); # Muniru A Asiru, Jan 04 2019
[(2*n^2+4*n+(-1)^n-1)/4: n in [1..60]]; // Vincenzo Librandi, Jun 16 2011
seq(floor(n^4/(2*n^2+1)),n=2..25); # Gary Detlefs, Feb 11 2010
f[x_, y_] := Floor[Abs[y/x - x/y]]; Table[Floor[f[1, n^2 + 2 n + 1]/2], {n, 60}] (* Robert G. Wilson v, Aug 11 2010 *) Table[n + Floor[n^2/2], {n, 20}] (* Eric W. Weisstein, Mar 27 2018 *) Table[((-1)^n + 2 n (n + 2) - 1)/4, {n, 10}] (* Eric W. Weisstein, Mar 27 2018 *) LinearRecurrence[{2, 0, -2, 1}, {1, 4, 7, 12}, 20] (* Eric W. Weisstein, Mar 27 2018 *) CoefficientList[Series[(-1 - 2 x + x^2)/((-1 + x)^3 (1 + x)), {x, 0, 20}], x] (* Eric W. Weisstein, Mar 27 2018 *)
a(n)=(2*n^2+4*n-1)\/4 \\ Charles R Greathouse IV, Apr 17 2012
def A074148(n): return n + n**2//2 # Chai Wah Wu, Jun 07 2022
x^2 + 3*x^3 + 7*x^4 + 11*x^5 + 17*x^6 + 23*x^7 + 31*x^8 + 39*x^9 + 49*x^10 + ...
[Floor(n^2/2)-1 : n in [2..100]]; // Wesley Ivan Hurt, Aug 06 2015
seq(floor((n^2+4*n+2)/2), n=0..20) # Gary Detlefs, Feb 10 2010
Table[Floor[n^2/2] - 1, {n, 2, 60}] (* Robert G. Wilson v, Aug 31 2006 *) LinearRecurrence[{2, 0, -2, 1}, {1, 3, 7, 11}, 60] (* Harvey P. Dale, Jan 16 2015 *) Floor[Range[2, 20]^2/2] - 1 (* Eric W. Weisstein, Mar 27 2018 *) Table[((-1)^n + 2 n^2 - 5)/4, {n, 2, 20}] (* Eric W. Weisstein, Mar 27 2018 *) CoefficientList[Series[(-1 - x - x^2 + x^3)/((-1 + x)^3 (1 + x)), {x, 0, 20}], x] (* Eric W. Weisstein, Mar 27 2018 *)
a(n) = n^2\2 - 1
As a triangular array: 1, 2, 4, 3, 5, 7, 6, 8, 10, 12, 9, 11, 13, 15, 17, 14, 16, 18, 20, 22, 24, ...
A074147 := proc(n,k) ceil((n-1)^2/2)+1+2*k ; end proc: seq(seq( A074147(n,k),k=0..n-1) ,n=1..12) ; # R. J. Mathar, Nov 02 2023
Flatten@Table[Ceiling[(n - 1)^2/2] + 2 k - 1, {n, 12}, {k, n}] (* Ivan Neretin, Dec 15 2016 *)
LinearRecurrence[{2,1,-4,1,2,-1},{1,6,15,36,65,114},50] (* Harvey P. Dale, Jun 22 2016 *)
a(n)=n^3/2 + n*(3+(-1)^n)/4 \\ Charles R Greathouse IV, Jun 11 2015
def A074149(n): return (n*(n**2-(n&1))>>1)+n # Chai Wah Wu, Aug 30 2022
LinearRecurrence[{2,0,-2,1},{0,1,17,35},50] (* Harvey P. Dale, Dec 23 2017 *)
a(n)=17*n^2/4+13*((-1)^n-1)/8 \\ Charles R Greathouse IV, Oct 07 2015
After a(8) = 4 the next term is 5 as 3 has already occurred three times.
a100795 n = a100795_list !! (n-1) a100795_list = f 0 a002024_list where f x ws = v : f v (us ++ vs) where (us, v:vs) = span (== x) ws -- Reinhard Zumkeller, Jan 17 2014
Index of the first occurrence of 2 is 2 and that of the second occurrence is 5, separated by a(3) and a(4), two terms.
mx = 22; lst = cnt = ConstantArray[0, mx + 1]; a = {}; Do[k = Min@Select[Range[mx + 1], lst[[#]] <= n && cnt[[#]] < # &]; AppendTo[a, k]; lst[[k]] = n + k + 1; cnt[[k]]++; If[k > mx, Break[]], {n, mx^2}]; a (* Ivan Neretin, Nov 25 2016 *)
From _Sean A. Irvine_, Mar 14 2023: (Start) Table begins: 0 1 0 1 0 1 0 1 0 1 1 2 2 3 3 4 0 1 2 3 4 5 6 7 0 1 3 6 10 15 21 28 0 1 4 9 16 25 36 49 0 1 5 14 30 55 91 140 0 1 6 19 44 85 146 231 0 1 7 26 70 155 301 532 (End)
Comments