cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A124880 Primes in A124837.

Original entry on oeis.org

7, 47, 42131, 23763863, 192066102203, 5733412167187, 34745876421709, 185813891783454008069, 171312804637561107990389, 29207630124216024960052176833, 6300447575454970515437116064749
Offset: 1

Views

Author

Alexander Adamchuk, Nov 11 2006

Keywords

Examples

			A124837(n) begins {1, 7, 47, 57, 459, 341, 3349, 3601, 42131, 44441, ...}.
Thus a(1) = 7, a(2) = 47, a(3) = 42131.
		

Crossrefs

A124837 are the numerators of third-order harmonic numbers H(n, (3)).
Corresponding numbers n such that A124837(n) is prime are listed in A124881.

Programs

  • Mathematica
    s=3/2;Do[s=s+1/n;f=Numerator[n*(n-1)/2*(s-3/2)]; If[PrimeQ[f],Print[{n-2,f}]],{n,3,125}]

Extensions

Crossrefs edited by Michel Marcus, Jul 14 2018

A124881 Numbers k such that A124837(k) is prime.

Original entry on oeis.org

2, 3, 9, 15, 25, 27, 33, 45, 55, 67, 70, 93, 94, 97, 112, 113, 125, 137, 189, 193, 212, 232, 262, 273, 281, 381, 453, 528, 670, 677, 742, 743, 827, 996, 1257, 1349, 1402, 1645, 1683, 2110, 2217, 2408, 2480, 2623, 3208, 3517, 3637, 3665, 4571, 4730
Offset: 1

Views

Author

Alexander Adamchuk, Nov 11 2006

Keywords

Examples

			A124837(n) begins {1, 7, 47, 57, 459, 341, 3349, 3601, 42131, 44441, ...}.
Thus a(1) = 2, a(2) = 3, a(3) = 9.
		

Crossrefs

A124837 are the numerators of third-order harmonic numbers H(n, (3)).
Corresponding primes in A124837 are listed in A124880.

Programs

  • Mathematica
    s=3/2;Do[s=s+1/n;f=Numerator[n*(n-1)/2*(s-3/2)]; If[PrimeQ[f],Print[{n-2,f}]],{n,3,1000}]

Extensions

More terms from Stefan Steinerberger, May 09 2007
Crossrefs edited by Michel Marcus, Jul 14 2018

A213998 Numerators of the triangle of fractions read by rows: pf(n,0) = 1, pf(n,n) = 1/(n+1) and pf(n+1,k) = pf(n,k) + pf(n,k-1) with 0 < k < n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 11, 1, 1, 7, 13, 25, 1, 1, 9, 47, 77, 137, 1, 1, 11, 37, 57, 87, 49, 1, 1, 13, 107, 319, 459, 223, 363, 1, 1, 15, 73, 533, 743, 341, 481, 761, 1, 1, 17, 191, 275, 1879, 2509, 3349, 4609, 7129, 1, 1, 19, 121, 1207, 1627, 2131, 2761, 3601, 4861, 7381, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 03 2012

Keywords

Comments

T(n,0) = 1;
T(n,1) = A005408(n-1) for n > 0;
T(n,2) = A188386(n-2) for n > 2;
T(n,n-3) = A124837(n-2) for n > 2;
T(n,n-2) = A027612(n-1) for n > 1;
T(n,n-1) = A001008(n) for n > 0;
T(n,n) = 1;
A214075(n,k) = floor(T(n,k) / A213999(n,k)).

Examples

			Start of triangle pf with corresponding triangles of numerators and denominators:
. 0:                            1
. 1:                         1    1/2
. 2:                     1     3/2    1/3
. 3:                  1    5/2    11/6    1/4
. 4:              1   7/2    13/3    25/12    1/5
. 5:           1    9/2   47/6    77/12   137/60   1/6
. 6:        1  11/2   37/3    57/4    87/10    49/20    1/7
. 7:     1  13/2  107/6  319/12  459/20   223/20  363/140   1/8
. 8:  1  15/2  73/3  533/12  743/15  341/10   481/35   761/280  1/9,
.
. 0:   numerators     1                          1    denominators
. 1:                1  1                        1  2       A213999
. 2:              1   3  1                     1 2  3
. 3:            1   5  11 1                   1 2 6  4
. 4:          1  7  13  25  1                1 2 3  12 5
. 5:        1  9  47  77 137  1             1 2 6 12  60 6
. 6:      1 11  37 57  87  49  1           1 2 3 4 10  20  7
. 7:    1 13 107 319 459 223 363 1        1 2 6 12 20 20 140 8
. 8:  1 15 73 533 743 341 481 761 1,     1 2 3 12 15 10 35 280 9.
		

Crossrefs

Cf. A005408, A188386 (columns).
Cf. A001008, A027612, A124837 (diagonals).
Cf. A213999 (denominators).

Programs

  • Haskell
    import Data.Ratio ((%), numerator, denominator, Ratio)
    a213998 n k = a213998_tabl !! n !! k
    a213998_row n = a213998_tabl !! n
    a213998_tabl = map (map numerator) $ iterate pf [1] where
       pf row = zipWith (+) ([0] ++ row) (row ++ [-1 % (x * (x + 1))])
                where x = denominator $ last row
  • Mathematica
    T[, 0] = 1; T[n, n_] := 1/(n + 1);
    T[n_, k_] := T[n, k] = T[n - 1, k] + T[n - 1, k - 1];
    Table[T[n, k] // Numerator, {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 10 2021 *)

A124838 Denominators of third-order harmonic numbers (defined by Conway and Guy, 1996).

Original entry on oeis.org

1, 2, 6, 4, 20, 10, 70, 56, 504, 420, 4620, 3960, 3432, 6006, 90090, 80080, 1361360, 408408, 369512, 67184, 470288, 1293292, 29745716, 27457584, 228813200, 212469400, 5736673800, 5354228880, 155272637520, 291136195350, 273491577450
Offset: 1

Views

Author

Jonathan Vos Post, Nov 10 2006

Keywords

Comments

Numerators are A124837. All fractions reduced. Thanks to Jonathan Sondow for verifying these calculations. He suggests that the equivalent definition in terms of first order harmonic numbers may be computationally simpler. We are happy with the description of A027612 Numerator of 1/n + 2/(n-1) + 3/(n-2) +...+ (n-1)/2 + n, but baffled by the description of A027611.

Examples

			a(1) = 1 = denominator of 1/1.
a(2) = 2 = denominator of 1/1 + 5/2 = 7/2.
a(3) = 6 = denominator of 7/2 + 13/3 = 47/6.
a(4) = 4 = denominator of 47/6 + 77/12 = 57/4.
a(5) = 20 = denominator of 57/4 + 87/10 = 549/20.
a(6) = 10 = denominator of 549/20 + 223/20 = 341/10
a(7) = 70 = denominator of 341/10 + 481/35 = 3349/70.
a(8) = 1260 = denominator of 3349/70 + 4609/280 = 88327/1260.
a(9) = 45 = denominator of 88327/1260 + 4861/252 = 3844/45.
a(10) = 504 = denominator of 3844/45 + 55991/2520 = 54251/504, or, untelescoping:
a(10) = 504 = denominator of 1/1 + 5/2 + 13/3 + 77/12 + 87/10 + 223/20 + 481/35 + 4609/252 + 4861/252 + 55991/2520 = 54251/504.
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, pp. 143 and 258-259, 1996.

Crossrefs

Programs

  • Haskell
    a124838 n = a213999 (n + 2) (n - 1) -- Reinhard Zumkeller, Jul 03 2012
  • Mathematica
    Table[Denominator[(n+2)!/2!/n!*Sum[1/k,{k,3,n+2}]],{n,1,40}] (* Alexander Adamchuk, Nov 11 2006 *)

Formula

A124837(n)/A124838(n) = Sum_{i=1..n} A027612(n)/A027611(n+1).
a(n) = denominator(Sum_{m=1..n} Sum_{L=1..m} Sum_{k=1..L} 1/k).
a(n) = denominator(((n+2)!/(2!*n!)) * Sum_{k=3..n+2} 1/k). - Alexander Adamchuk, Nov 11 2006
a(n) = A213999(n+2,n-1). - Reinhard Zumkeller, Jul 03 2012

Extensions

Corrected and extended by Alexander Adamchuk, Nov 11 2006

A124878 Primes in A027612.

Original entry on oeis.org

5, 13, 223, 4861, 197698279, 25472027467, 6975593267347, 218572480850557, 1592457339642613, 2955634782407818711841368777079578319, 2950127241932882597818337002939124083061, 232242878286351670588710938679161483012314573381293769
Offset: 1

Views

Author

Alexander Adamchuk, Nov 11 2006

Keywords

Examples

			A027612(n) begins {1, 5, 13, 77, 87, 223, 481, 4609, 4861, ...}.
Thus a(1) = 5, a(2) = 13, a(3) = 223, a(4) = 4861.
		

Crossrefs

A027612(n) are the numerators of second order harmonic numbers H(n, (2)).
Corresponding numbers n such that A027612(n) is prime are listed in A124879.

Programs

  • Mathematica
    s=1;Do[s=s+1/(n+1);f=Numerator[(n+1)*(s-1)]; If[PrimeQ[f],Print[{n,f}]],{n,1,1942}]
  • PARI
    lista(nn) = {for (n=1, nn, if (isprime(p=numerator(sum(k=1, n, k/(n-k+1)))), print1(p, ", ")););} \\ Michel Marcus, Jul 14 2018

Formula

a(n) = A027612(A124879(n)).

Extensions

a(12) from, and crossrefs edited by Michel Marcus, Jul 14 2018

A124879 Numbers k such that A027612(k) is prime.

Original entry on oeis.org

2, 3, 6, 9, 18, 25, 29, 30, 39, 84, 91, 125, 130, 184, 195, 199, 203, 241, 245, 273, 281, 378, 552, 571, 653, 776, 901, 1099, 1215, 1224, 1235, 1315, 1412, 1657, 1942, 2076, 2085, 2743, 2745, 2855, 2859, 3517, 3717, 4183, 4188, 4362, 4547, 4728, 4783
Offset: 1

Views

Author

Alexander Adamchuk, Nov 11 2006

Keywords

Examples

			A027612 begins {1, 5, 13, 77, 87, 223, 481, 4609, 4861, ...}.
Thus a(1) = 2, a(2) = 3, a(3) = 6, a(4) = 9.
		

Crossrefs

A027612(n) are the numerators of second order harmonic numbers H(n, (2)).
Corresponding primes in A027612 are listed in A124878.

Programs

  • Mathematica
    s=1;Do[s=s+1/(n+1);f=Numerator[(n+1)*(s-1)]; If[PrimeQ[f],Print[{n,f}]],{n,1,1942}]
  • PARI
    isok(n) = isprime(numerator(sum(k=1, n, k/(n-k+1)))); \\ Michel Marcus, Jul 14 2018

Extensions

More terms from Stefan Steinerberger, May 29 2007
Crossrefs edited by Michel Marcus, Jul 14 2018

A076174 Numerator of Sum_{i+j+k=n, i,j,k>=1} (i*j)/k.

Original entry on oeis.org

0, 0, 1, 9, 37, 319, 743, 2509, 2761, 32891, 35201, 485333, 511073, 535097, 1115239, 19679783, 6786821, 133033679, 136913555, 140608675, 144135835, 678544345, 693417203, 17692378667, 18035598467, 165294957803, 168163294703
Offset: 1

Views

Author

Benoit Cloitre, Nov 01 2002

Keywords

Comments

a(n) is odd.
a(n+2) = Numerators of 4th-order harmonic numbers (defined by Conway and Guy, 1996). - Alexander Adamchuk, Jun 14 2008

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, pp. 143 and 258-259, 1996.

Crossrefs

Cf. A076175.
Cf. A124837 = Numerators of third-order harmonic numbers (defined by Conway and Guy, 1996).

Programs

  • Mathematica
    Table[ Numerator[Sum[ Sum[ Sum[ Sum[ 1/k, {k,1,l} ], {l,1,m} ], {m,1,n} ], {n,1,s-2} ] ], {s,1,52} ] Table[ Numerator[ (n-1)n(n+1)/6 * Sum[ 1/k, {k,4,n+1} ] ], {n,1,50}] (* Alexander Adamchuk, Jun 14 2008 *)
  • PARI
    a(n)=numerator(sum(i=1,n,sum(j=1,n,sum(k=1,n,if(n-i-j-k,0,1)*i*j/k))))

Formula

a(n) = Numerator[Sum[ Sum[ Sum[ Sum[ 1/k, {k,1,l} ], {l,1,m} ], {m,1,n} ], {n,1,s-2} ] ]. a(n) = Numerator[ (n-1)n(n+1)/6 * Sum[ 1/k, {k,4,n+1} ] ]. - Alexander Adamchuk, Jun 14 2008
a(n) = Numerator(sum(1/(k+3), k=1..n-2)), n>1. - Gary Detlefs, Sep 14 2011

A354894 a(n) is the numerator of the n-th hyperharmonic number of order n.

Original entry on oeis.org

1, 5, 47, 319, 1879, 20417, 263111, 261395, 8842385, 33464927, 166770367, 3825136961, 19081066231, 57128792093, 236266661971, 7313175618421, 14606816124167, 102126365345729, 3774664307989373, 3771059091081773, 154479849447926113, 6637417807457499259, 6632660439700528339
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 10 2022

Keywords

Examples

			1, 5/2, 47/6, 319/12, 1879/20, 20417/60, 263111/210, 261395/56, 8842385/504, ...
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996, p. 258.

Crossrefs

Differs from A049281.

Programs

  • Mathematica
    Table[SeriesCoefficient[-Log[1 - x]/(1 - x)^n, {x, 0, n}], {n, 1, 23}] // Numerator
    Table[Binomial[2 n - 1, n - 1] (HarmonicNumber[2 n - 1] - HarmonicNumber[n - 1]), {n, 1, 23}] // Numerator
  • PARI
    H(n) = sum(i=1, n, 1/i);
    a(n) = numerator(binomial(2*n-1,n-1) * (H(2*n-1) - H(n-1))); \\ Michel Marcus, Jun 10 2022
    
  • Python
    from math import comb
    from sympy import harmonic
    def A354894(n): return (comb(2*n-1,n-1)*(harmonic(2*n-1)-harmonic(n-1))).p # Chai Wah Wu, Jun 18 2022

Formula

a(n) is the numerator of the coefficient of x^n in the expansion of -log(1 - x) / (1 - x)^n.
a(n) is the numerator of binomial(2*n-1,n-1) * (H(2*n-1) - H(n-1)), where H(n) is the n-th harmonic number.
a(n) / A354895(n) ~ log(2) * 2^(2*n-1) / sqrt(Pi * n).

A316297 a(n) = n! times the denominator of the n-th harmonic number H(n).

Original entry on oeis.org

1, 4, 36, 288, 7200, 14400, 705600, 11289600, 914457600, 9144576000, 1106493696000, 13277924352000, 2243969215488000, 31415569016832000, 471233535252480000, 15079473128079360000, 4357967734014935040000, 26147806404089610240000, 9439358111876349296640000
Offset: 1

Views

Author

Matthew Campbell, Jun 29 2018

Keywords

Examples

			a(4) = 4! * A002805(4) = 24 * 12 = 288.
		

Crossrefs

Programs

  • Maple
    H:= proc(n) H(n):= 1/n +`if`(n=1, 0, H(n-1)) end:
    a:= n-> denom(H(n))*n!:
    seq(a(n), n=1..20);  # Alois P. Heinz, Jul 21 2018
  • Mathematica
    a[n_] := n! Denominator@HarmonicNumber@n; Array[a, 18] (* Robert G. Wilson v, Jun 30 2018 *)
  • PARI
    a(n) = n! * denominator(sum(k=1, n, 1/k)); \\ Michel Marcus, Aug 12 2018

Formula

a(n) = A000142(n) * A002805(n).
Showing 1-9 of 9 results.