cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A213999 Denominators of the triangle of fractions read by rows: pf(n,0) = 1, pf(n,n) = 1/(n+1) and pf(n+1,k) = pf(n,k) + pf(n,k-1) with 0 < k < n; denominators: A213998.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 6, 4, 1, 2, 3, 12, 5, 1, 2, 6, 12, 60, 6, 1, 2, 3, 4, 10, 20, 7, 1, 2, 6, 12, 20, 20, 140, 8, 1, 2, 3, 12, 15, 10, 35, 280, 9, 1, 2, 6, 4, 20, 30, 70, 280, 2520, 10, 1, 2, 3, 12, 10, 12, 21, 56, 252, 2520, 11, 1, 2, 6, 12, 60, 60, 84, 168, 504, 2520, 27720, 12
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 03 2012

Keywords

Comments

T(n,0) = 1;
T(n,1) = A007395(n) for n > 0;
T(n,2) = A010704(n) for n > 1;
T(n,n-3) = A124838(n-2) for n > 2;
T(n,n-2) = A027611(n-1) for n > 1;
T(n,n-1) = A002805(n) for n > 0;
T(n,n) = n + 1;
A003418(n+1) = least common multiple of n-th row;
A214075(n,k) = floor(A213998(n,k) / T(n,k)).

Examples

			See A213998.
		

Programs

  • Haskell
    import Data.Ratio ((%), denominator, Ratio)
    a213999 n k = a213999_tabl !! n !! k
    a213999_row n = a213999_tabl !! n
    a213999_tabl = map (map denominator) $ iterate pf [1] where
       pf row = zipWith (+) ([0] ++ row) (row ++ [-1 % (x * (x + 1))])
                where x = denominator $ last row
  • Mathematica
    T[, 0] = 1; T[n, n_] := 1/(n + 1);
    T[n_, k_] := T[n, k] = T[n - 1, k] + T[n - 1, k - 1];
    Table[T[n, k] // Denominator, {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 10 2021 *)

A124837 Numerators of third-order harmonic numbers (defined by Conway and Guy, 1996).

Original entry on oeis.org

1, 7, 47, 57, 459, 341, 3349, 3601, 42131, 44441, 605453, 631193, 655217, 1355479, 23763863, 24444543, 476698557, 162779395, 166474515, 34000335, 265842403, 812400067, 20666950267, 21010170067, 192066102203, 194934439103
Offset: 1

Views

Author

Jonathan Vos Post, Nov 10 2006

Keywords

Comments

Denominators are A124838. All fractions reduced. Thanks to Jonathan Sondow for verifying these calculations. He suggests that the equivalent definition in terms of first order harmonic numbers may be computationally simpler. We are happy with the description of A027612 Numerator of 1/n + 2/(n-1) + 3/(n-2) + ... + (n-1)/2 + n, but baffled by the description of A027611.
From Alexander Adamchuk, Nov 11 2006: (Start)
a(n) is the numerator of H(n, (3)) = Sum_{m=1..n} Sum_{k=1..m} HarmonicNumber(k).
Denominators are listed in A124838.
p divides a(p-5) for prime p > 5.
Primes are listed in A129880.
Numbers k such that a(k) is prime are listed in A129881. (End)

Examples

			a(1) = 1 = numerator of 1/1.
a(2) = 7 = numerator of 1/1 + 5/2 = 7/2.
a(3) = 47 = numerator of 7/2 + 13/3 = 47/6.
a(4) = 57 = numerator of 47/6 + 77/12 = 57/4.
a(5) = 549 = numerator of 57/4 + 87/10 = 549/20.
a(6) = 341 = numerator of 549/20 + 223/20 = 341/10
a(7) = 3349 = numerator of 341/10 + 481/35 = 3349/70.
a(8) = 88327 = numerator of 3349/70 + 4609/280 = 88327/1260.
a(9) = 3844 = numerator of 88327/1260 + 4861/252 = 3844/45.
a(10) = 54251 = numerator of 3844/45 + 55991/2520 = 54251/504, or, untelescoping:
a(10) = 54251 = numerator of 1/1 + 5/2 + 13/3 + 77/12 + 87/10 + 223/20 + 481/35 + 4609/252 + 4861/252 + 55991/2520 = 54251/504.
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, pp. 143 and 258-259, 1996.

Crossrefs

Programs

  • Haskell
    a124837 n = a213998 (n + 2) (n - 1) -- Reinhard Zumkeller, Jul 03 2012
  • Mathematica
    Table[Numerator[(n+2)!/2!/n!*Sum[1/k,{k,3,n+2}]],{n,1,30}] (* Alexander Adamchuk, Nov 11 2006 *)

Formula

A124837(n)/A124838(n) = Sum{i=1..n} A027612(n)/A027611(n+1).
From Alexander Adamchuk, Nov 11 2006: (Start)
a(n) = numerator(Sum_{m=1..n} Sum_{l=1..m} Sum_{k=1..l} 1/k).
a(n) = numerator(((n+2)!/(2!*n!)) * Sum_{k=3..n+2} 1/k).
a(n) = numerator(((n+2)*(n+1)/2) * Sum_{k=3..n+2} 1/k). (End)
a(n) = numerator(Sum_{k=0..n-1} (-1)^k*binomial(-3,k)/(n-k)). - Gary Detlefs, Jul 18 2011
a(n) = A213998(n+2,n-1). - Reinhard Zumkeller, Jul 03 2012

Extensions

Corrected and extended by Alexander Adamchuk, Nov 11 2006

A354895 a(n) is the denominator of the n-th hyperharmonic number of order n.

Original entry on oeis.org

1, 2, 6, 12, 20, 60, 210, 56, 504, 504, 660, 3960, 5148, 4004, 4290, 34320, 17680, 31824, 302328, 77520, 813960, 8953560, 2288132, 27457584, 49031400, 12498200, 168725700, 42948360, 10925460, 163881900, 2540169450, 645122400, 327523680, 5567902560, 1412149200
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 10 2022

Keywords

Examples

			1, 5/2, 47/6, 319/12, 1879/20, 20417/60, 263111/210, 261395/56, 8842385/504, ...
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996, p. 258.

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    H:= ListTools:-PartialSums([seq(1/i,i=1..2*N-1)]):
    f:= n -> denom(binomial(2*n-1,n-1)*(H[2*n-1]-H[n-1])):
    f(1):= 1:
    map(f, [$1..N]); # Robert Israel, Jul 10 2023
  • Mathematica
    Table[SeriesCoefficient[-Log[1 - x]/(1 - x)^n, {x, 0, n}], {n, 1, 35}] // Denominator
    Table[Binomial[2 n - 1, n - 1] (HarmonicNumber[2 n - 1] - HarmonicNumber[n - 1]), {n, 1, 35}] // Denominator
  • PARI
    H(n) = sum(i=1, n, 1/i);
    a(n) = denominator(binomial(2*n-1,n-1) * (H(2*n-1) - H(n-1))); \\ Michel Marcus, Jun 10 2022
    
  • Python
    from math import comb
    from sympy import harmonic
    def A354895(n): return (comb(2*n-1,n-1)*(harmonic(2*n-1)-harmonic(n-1))).q # Chai Wah Wu, Jun 18 2022

Formula

a(n) is the denominator of the coefficient of x^n in the expansion of -log(1 - x) / (1 - x)^n.
a(n) is the denominator of binomial(2*n-1,n-1) * (H(2*n-1) - H(n-1)), where H(n) is the n-th harmonic number.
A354894(n) / a(n) ~ log(2) * 2^(2*n-1) / sqrt(Pi * n).

A316297 a(n) = n! times the denominator of the n-th harmonic number H(n).

Original entry on oeis.org

1, 4, 36, 288, 7200, 14400, 705600, 11289600, 914457600, 9144576000, 1106493696000, 13277924352000, 2243969215488000, 31415569016832000, 471233535252480000, 15079473128079360000, 4357967734014935040000, 26147806404089610240000, 9439358111876349296640000
Offset: 1

Views

Author

Matthew Campbell, Jun 29 2018

Keywords

Examples

			a(4) = 4! * A002805(4) = 24 * 12 = 288.
		

Crossrefs

Programs

  • Maple
    H:= proc(n) H(n):= 1/n +`if`(n=1, 0, H(n-1)) end:
    a:= n-> denom(H(n))*n!:
    seq(a(n), n=1..20);  # Alois P. Heinz, Jul 21 2018
  • Mathematica
    a[n_] := n! Denominator@HarmonicNumber@n; Array[a, 18] (* Robert G. Wilson v, Jun 30 2018 *)
  • PARI
    a(n) = n! * denominator(sum(k=1, n, 1/k)); \\ Michel Marcus, Aug 12 2018

Formula

a(n) = A000142(n) * A002805(n).
Showing 1-4 of 4 results.