A076175
Denominator of Sum_{i+j+k=n, i,j,k>=1} (i*j)/k.
Original entry on oeis.org
1, 1, 1, 2, 3, 12, 15, 30, 21, 168, 126, 1260, 990, 792, 1287, 18018, 5005, 80080, 68068, 58344, 50388, 201552, 176358, 3879876, 3432198, 27457584, 24515700, 637408200, 573667380, 16062686640, 29113619535, 26466926850, 24131609775
Offset: 1
-
a(n)=denominator(sum(i=1,n,sum(j=1,n,sum(k=1,n,if(n-i-j-k,0,1)*i*j/k))))
A354894
a(n) is the numerator of the n-th hyperharmonic number of order n.
Original entry on oeis.org
1, 5, 47, 319, 1879, 20417, 263111, 261395, 8842385, 33464927, 166770367, 3825136961, 19081066231, 57128792093, 236266661971, 7313175618421, 14606816124167, 102126365345729, 3774664307989373, 3771059091081773, 154479849447926113, 6637417807457499259, 6632660439700528339
Offset: 1
1, 5/2, 47/6, 319/12, 1879/20, 20417/60, 263111/210, 261395/56, 8842385/504, ...
- J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996, p. 258.
-
Table[SeriesCoefficient[-Log[1 - x]/(1 - x)^n, {x, 0, n}], {n, 1, 23}] // Numerator
Table[Binomial[2 n - 1, n - 1] (HarmonicNumber[2 n - 1] - HarmonicNumber[n - 1]), {n, 1, 23}] // Numerator
-
H(n) = sum(i=1, n, 1/i);
a(n) = numerator(binomial(2*n-1,n-1) * (H(2*n-1) - H(n-1))); \\ Michel Marcus, Jun 10 2022
-
from math import comb
from sympy import harmonic
def A354894(n): return (comb(2*n-1,n-1)*(harmonic(2*n-1)-harmonic(n-1))).p # Chai Wah Wu, Jun 18 2022
Showing 1-2 of 2 results.