cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A076174 Numerator of Sum_{i+j+k=n, i,j,k>=1} (i*j)/k.

Original entry on oeis.org

0, 0, 1, 9, 37, 319, 743, 2509, 2761, 32891, 35201, 485333, 511073, 535097, 1115239, 19679783, 6786821, 133033679, 136913555, 140608675, 144135835, 678544345, 693417203, 17692378667, 18035598467, 165294957803, 168163294703
Offset: 1

Views

Author

Benoit Cloitre, Nov 01 2002

Keywords

Comments

a(n) is odd.
a(n+2) = Numerators of 4th-order harmonic numbers (defined by Conway and Guy, 1996). - Alexander Adamchuk, Jun 14 2008

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, pp. 143 and 258-259, 1996.

Crossrefs

Cf. A076175.
Cf. A124837 = Numerators of third-order harmonic numbers (defined by Conway and Guy, 1996).

Programs

  • Mathematica
    Table[ Numerator[Sum[ Sum[ Sum[ Sum[ 1/k, {k,1,l} ], {l,1,m} ], {m,1,n} ], {n,1,s-2} ] ], {s,1,52} ] Table[ Numerator[ (n-1)n(n+1)/6 * Sum[ 1/k, {k,4,n+1} ] ], {n,1,50}] (* Alexander Adamchuk, Jun 14 2008 *)
  • PARI
    a(n)=numerator(sum(i=1,n,sum(j=1,n,sum(k=1,n,if(n-i-j-k,0,1)*i*j/k))))

Formula

a(n) = Numerator[Sum[ Sum[ Sum[ Sum[ 1/k, {k,1,l} ], {l,1,m} ], {m,1,n} ], {n,1,s-2} ] ]. a(n) = Numerator[ (n-1)n(n+1)/6 * Sum[ 1/k, {k,4,n+1} ] ]. - Alexander Adamchuk, Jun 14 2008
a(n) = Numerator(sum(1/(k+3), k=1..n-2)), n>1. - Gary Detlefs, Sep 14 2011

A354895 a(n) is the denominator of the n-th hyperharmonic number of order n.

Original entry on oeis.org

1, 2, 6, 12, 20, 60, 210, 56, 504, 504, 660, 3960, 5148, 4004, 4290, 34320, 17680, 31824, 302328, 77520, 813960, 8953560, 2288132, 27457584, 49031400, 12498200, 168725700, 42948360, 10925460, 163881900, 2540169450, 645122400, 327523680, 5567902560, 1412149200
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 10 2022

Keywords

Examples

			1, 5/2, 47/6, 319/12, 1879/20, 20417/60, 263111/210, 261395/56, 8842385/504, ...
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996, p. 258.

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    H:= ListTools:-PartialSums([seq(1/i,i=1..2*N-1)]):
    f:= n -> denom(binomial(2*n-1,n-1)*(H[2*n-1]-H[n-1])):
    f(1):= 1:
    map(f, [$1..N]); # Robert Israel, Jul 10 2023
  • Mathematica
    Table[SeriesCoefficient[-Log[1 - x]/(1 - x)^n, {x, 0, n}], {n, 1, 35}] // Denominator
    Table[Binomial[2 n - 1, n - 1] (HarmonicNumber[2 n - 1] - HarmonicNumber[n - 1]), {n, 1, 35}] // Denominator
  • PARI
    H(n) = sum(i=1, n, 1/i);
    a(n) = denominator(binomial(2*n-1,n-1) * (H(2*n-1) - H(n-1))); \\ Michel Marcus, Jun 10 2022
    
  • Python
    from math import comb
    from sympy import harmonic
    def A354895(n): return (comb(2*n-1,n-1)*(harmonic(2*n-1)-harmonic(n-1))).q # Chai Wah Wu, Jun 18 2022

Formula

a(n) is the denominator of the coefficient of x^n in the expansion of -log(1 - x) / (1 - x)^n.
a(n) is the denominator of binomial(2*n-1,n-1) * (H(2*n-1) - H(n-1)), where H(n) is the n-th harmonic number.
A354894(n) / a(n) ~ log(2) * 2^(2*n-1) / sqrt(Pi * n).
Showing 1-2 of 2 results.