cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A354895 a(n) is the denominator of the n-th hyperharmonic number of order n.

Original entry on oeis.org

1, 2, 6, 12, 20, 60, 210, 56, 504, 504, 660, 3960, 5148, 4004, 4290, 34320, 17680, 31824, 302328, 77520, 813960, 8953560, 2288132, 27457584, 49031400, 12498200, 168725700, 42948360, 10925460, 163881900, 2540169450, 645122400, 327523680, 5567902560, 1412149200
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 10 2022

Keywords

Examples

			1, 5/2, 47/6, 319/12, 1879/20, 20417/60, 263111/210, 261395/56, 8842385/504, ...
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996, p. 258.

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    H:= ListTools:-PartialSums([seq(1/i,i=1..2*N-1)]):
    f:= n -> denom(binomial(2*n-1,n-1)*(H[2*n-1]-H[n-1])):
    f(1):= 1:
    map(f, [$1..N]); # Robert Israel, Jul 10 2023
  • Mathematica
    Table[SeriesCoefficient[-Log[1 - x]/(1 - x)^n, {x, 0, n}], {n, 1, 35}] // Denominator
    Table[Binomial[2 n - 1, n - 1] (HarmonicNumber[2 n - 1] - HarmonicNumber[n - 1]), {n, 1, 35}] // Denominator
  • PARI
    H(n) = sum(i=1, n, 1/i);
    a(n) = denominator(binomial(2*n-1,n-1) * (H(2*n-1) - H(n-1))); \\ Michel Marcus, Jun 10 2022
    
  • Python
    from math import comb
    from sympy import harmonic
    def A354895(n): return (comb(2*n-1,n-1)*(harmonic(2*n-1)-harmonic(n-1))).q # Chai Wah Wu, Jun 18 2022

Formula

a(n) is the denominator of the coefficient of x^n in the expansion of -log(1 - x) / (1 - x)^n.
a(n) is the denominator of binomial(2*n-1,n-1) * (H(2*n-1) - H(n-1)), where H(n) is the n-th harmonic number.
A354894(n) / a(n) ~ log(2) * 2^(2*n-1) / sqrt(Pi * n).
Showing 1-1 of 1 results.