A124837 Numerators of third-order harmonic numbers (defined by Conway and Guy, 1996).
1, 7, 47, 57, 459, 341, 3349, 3601, 42131, 44441, 605453, 631193, 655217, 1355479, 23763863, 24444543, 476698557, 162779395, 166474515, 34000335, 265842403, 812400067, 20666950267, 21010170067, 192066102203, 194934439103
Offset: 1
Examples
a(1) = 1 = numerator of 1/1. a(2) = 7 = numerator of 1/1 + 5/2 = 7/2. a(3) = 47 = numerator of 7/2 + 13/3 = 47/6. a(4) = 57 = numerator of 47/6 + 77/12 = 57/4. a(5) = 549 = numerator of 57/4 + 87/10 = 549/20. a(6) = 341 = numerator of 549/20 + 223/20 = 341/10 a(7) = 3349 = numerator of 341/10 + 481/35 = 3349/70. a(8) = 88327 = numerator of 3349/70 + 4609/280 = 88327/1260. a(9) = 3844 = numerator of 88327/1260 + 4861/252 = 3844/45. a(10) = 54251 = numerator of 3844/45 + 55991/2520 = 54251/504, or, untelescoping: a(10) = 54251 = numerator of 1/1 + 5/2 + 13/3 + 77/12 + 87/10 + 223/20 + 481/35 + 4609/252 + 4861/252 + 55991/2520 = 54251/504.
References
- J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, pp. 143 and 258-259, 1996.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Harmonic Number. See equation for third order harmonic numbers.
Crossrefs
Programs
-
Haskell
a124837 n = a213998 (n + 2) (n - 1) -- Reinhard Zumkeller, Jul 03 2012
-
Mathematica
Table[Numerator[(n+2)!/2!/n!*Sum[1/k,{k,3,n+2}]],{n,1,30}] (* Alexander Adamchuk, Nov 11 2006 *)
Formula
From Alexander Adamchuk, Nov 11 2006: (Start)
a(n) = numerator(Sum_{m=1..n} Sum_{l=1..m} Sum_{k=1..l} 1/k).
a(n) = numerator(((n+2)!/(2!*n!)) * Sum_{k=3..n+2} 1/k).
a(n) = numerator(((n+2)*(n+1)/2) * Sum_{k=3..n+2} 1/k). (End)
a(n) = numerator(Sum_{k=0..n-1} (-1)^k*binomial(-3,k)/(n-k)). - Gary Detlefs, Jul 18 2011
a(n) = A213998(n+2,n-1). - Reinhard Zumkeller, Jul 03 2012
Extensions
Corrected and extended by Alexander Adamchuk, Nov 11 2006
Comments