A072913
Numerators of (1/4!)*(H(n,1)^4+6*H(n,1)^2*H(n,2)+8*H(n,1)*H(n,3)+3*H(n,2)^2+6*H(n,4)), where H(n,m) = Sum_{i=1..n} 1/i^m are generalized harmonic numbers.
Original entry on oeis.org
1, 31, 3661, 76111, 58067611, 68165041, 187059457981, 3355156783231, 300222042894631, 327873266234371, 5194481903600608411, 5578681466128739761, 170044702211669500782121, 180514164422163370751221
Offset: 1
-
x(n)=sum(k=1,n,1/k); y(n)=sum(k=1,n,1/k^2); z(n)=sum(k=1,n,1/k^3); w(n)=sum(k=1,n,1/k^4); a(n)=numerator(1/4!*(x(n)^4+6*x(n)^2*y(n)+8*x(n)*z(n)+3*y(n)^2+6*w(n)))
A257894
Square array read by ascending antidiagonals where T(n,k) is the mean number of maxima in a set of n random k-dimensional real vectors (numerators).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 11, 7, 1, 1, 25, 85, 15, 1, 1, 137, 415, 575, 31, 1, 1, 49, 12019, 5845, 3661, 63, 1, 1, 363, 13489, 874853, 76111, 22631, 127, 1, 1, 761, 726301, 336581, 58067611, 952525, 137845, 255, 1, 1, 7129, 3144919, 129973303, 68165041
Offset: 1
Array of fractions begins:
1, 1, 1, 1, 1, 1, ...
1, 3/2, 7/4, 15/8, 31/16, 63/32, ...
1, 11/6, 85/36, 575/216, 3661/1296, 22631/7776, ...
1, 25/12, 415/144, 5845/1728, 76111/20736, 952525/248832, ...
1, 137/60, 12019/3600, 874853/216000, 58067611/12960000, 3673451957/777600000, ...
1, 49/20, 13489/3600, 336581/72000, 68165041/12960000, 483900263/86400000, ...
...
Row 2 (numerators) is A000225 (Mersenne numbers 2^k-1),
Row 3 is A001240 (Differences of reciprocals of unity),
Row 4 is A028037,
Row 5 is A103878,
Row 6 is not in the OEIS.
Column 2 (numerators) is A001008 (Wolstenholme numbers: numerator of harmonic number),
Column 3 is A027459,
Column 4 is A027462,
Column 5 is A072913,
Column 6 is not in the OEIS.
- Zhi-Dong Bai, Chern-Ching Chao, Hsien-Kuei Hwang and Wen-Qi Liang, On the variance of the number of maxima in random vectors and its applications, The Annals of Applied Probability 1998, Vol. 8, No. 3, 886-895.
- O. E. Barndorff-Nielsen and M. Sobel, On the distribution of the number of admissible points in a vector random sample, Theory Probab. Appl. 11, 249-269.
-
T[n_, k_] := Sum[(-1)^(j - 1)*j^(1 - k)*Binomial[n, j], {j, 1, n}]; Table[T[n - k + 1, k] // Numerator, {n, 1, 12}, {k, 1, n}] // Flatten
Original entry on oeis.org
1, 15, 575, 5845, 874853, 1009743, 389919909, 3449575767, 101622655189, 109727076745, 156384687564755, 166320156938585, 386435095871809685, 406739013616700465, 426379471078085225, 3563283104558049475, 18232291817356124003075, 18937687901195398630875
Offset: 1
Showing 1-3 of 3 results.
Comments