A027595 Sequence satisfies T^2(a)=a, where T is defined below.
1, 2, 2, 4, 4, 6, 7, 11, 12, 16, 18, 25, 28, 36, 41, 53, 59, 73, 82, 102, 115, 138, 155, 186, 209, 246, 275, 324, 363, 420, 468, 541, 605, 691, 768, 877, 976, 1103, 1222, 1380, 1530, 1716, 1895, 2122, 2343, 2609, 2872, 3192, 3514, 3890, 4269, 4716, 5172, 5697
Offset: 1
References
- S. Viswanath (student, Dept. Math, Indian Inst. Technology, Kanpur) A Note on Partition Eigensequences, preprint, Nov 15 1996.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..250
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210; arXiv:math/0205301 [math.CO], 2002.
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Coordination Sequences, Planing Numbers, and Other Recent Sequences (II), Experimental Mathematics Seminar, Rutgers University, Jan 31 2019, Part I, Part 2, Slides. (Mentions this sequence)
Crossrefs
Cf. A027595.
Formula
Define T:a->b by: given a1<=a2<=..., let b(n) = number of ways of partitioning n into parts from a1, a2, ... such that parts = 0 mod 5 do not occur more than once.
Extensions
More terms and offset corrected by Sean A. Irvine, Nov 10 2019
Comments