cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027618 c(i,j) is cost of evaluation of edit distance of two strings with lengths i and j, when you use recursion (every call has a unit cost, other computations are free); sequence gives c(n,n).

Original entry on oeis.org

1, 4, 19, 94, 481, 2524, 13483, 72958, 398593, 2193844, 12146179, 67570078, 377393953, 2114900428, 11885772379, 66963572734, 378082854913, 2138752086628, 12118975586803, 68774144872414, 390815720696161, 2223564321341884
Offset: 0

Views

Author

Bruno Petazzoni (Bruno.Petazzoni(AT)ac-idf.jussieu.fr)

Keywords

References

  • Found by 7 students: Dufour, Hermon, Lesueur, Moynot, Schabanel, Sers and Wolf.

Crossrefs

Delannoy numbers A008288, A001850 are given by c'(i, j)=(3c(i, j)-1)/2.

Programs

  • Mathematica
    Table[SeriesCoefficient[(3/Sqrt[1-6*x+x^2]-1/(1-x))/2,{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
  • PARI
    x='x+O('x^66); Vec((3/sqrt(1-6*x+x^2)-1/(1-x))/2) \\ Joerg Arndt, May 04 2013

Formula

c(n, n) where c(i, 0)=c(0, j)=1 and c(i+1, j+1)=1+c(i+1, j)+c(i, j+1)+c(i, j) (c(i, j) is A047671).
G.f.: (3/sqrt(1-6*x+x^2)-1/(1-x))/2.
Recurrence: n*(2*n-3)*a(n) = (2*n-1)*(7*n-10)*a(n-1) - (2*n-3)*(7*n-4)*a(n-2) + (n-2)*(2*n-1)*a(n-3). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ 3*sqrt(8+6*sqrt(2))*(3+2*sqrt(2))^n/(8*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 08 2012