A027623 a(0) = 1; for n > 0, a(n) = number of rings with n elements.
1, 1, 2, 2, 11, 2, 4, 2, 52, 11, 4, 2, 22, 2, 4, 4, 390, 2, 22, 2, 22, 4, 4, 2, 104, 11, 4, 59, 22, 2, 8, 2
Offset: 0
Examples
The 11 rings of order 4 (from _Christian G. Bower_): over C4: 1*1 = 0, 1 or 2; over C2 X C2 = <1> X <2>: (1*1,1*2,2*1,2*2) = 0000, 0001, 0002, 0012, 0102, 0112, 1002 or 1223.
Links
- V. G. Antipkin and V. P. Elizarov, Rings of order p^3, Sib. Math. J. vol 23 no 4 (1982) pp 457-464, MR0668331 (84d:16025).
- R. Ballieu [ Math. Rev. 0022841; see also Math. Rev. 51#5655] showed a(8) = 52, a(p^3) = 3p + 50 if p is an odd prime.
- Grigore Călugăreanu, Rings with very few nilpotents, An. Sţiinţ. Univ. Al. I. Cuza Iaşi. Mat. (2018), p. 149.
- C. R. Fletcher, Rings of small order, Math. Gaz. vol. 64 (1980) p. 13, 1980, see esp. p. 21.
- Yang-Hui He and Minhyong Kim, Learning Algebraic Structures: Preliminary Investigations, arXiv:1905.02263 [cs.LG], 2019.
- A. V. Lelechenko, Parity of the number of primes in a given interval and algorithms of the sublinear summation, arXiv preprint arXiv:1305.1639 [math.NT], 2013.
- Desmond MacHale, Are There More Finite Rings than Finite Groups, Amer. Math. Monthly (2020) Vol. 127, Issue 10, 936-938.
- C. Noebauer, The Numbers of Small Rings.
- C. Noebauer, Thesis on the enumeration of near-rings.
- Christof Noebauer, The Numbers of Small Rings (PostScript).
- R. Raghavendran, Finite associative rings, Compositio Mathematica vol 21 no 2 (1969) pp. 195-229.
- Eric Weisstein's World of Mathematics, Ring.
- Index to sequences related to rings.
Crossrefs
From Bernard Schott, Mar 28 2021: (Start)
--------------------------------------------------------------------
| Rings with | with 1 | without 1 | with 1 or |
| n elements | | | without 1 |
--------------------------------------------------------------------
--------------------------------------------------------------------
--------------------------------------------------------------------
| noncommutative | | | A037234 with a(0) = 0 |
--------------------------------------------------------------------
(End)
Programs
-
PARI
apply( A027623(n, e=0)=if( !e, vecprod([call(self(), f) | f <- factor(n)~]), e<3, [2^(n>0), 11][e], e==3, if(n>2, 3*sqrtnint(n, 3), 2)+50, n>2 || e>4, /*error*/("not yet implemented"), 390), [0..63]) \\ M. F. Hasler, Jan 05 2021
Extensions
More terms from Christian G. Bower, Jun 15 1998
a(16) from Christof Noebauer (christof.noebauer(AT)algebra.uni-linz.ac.at), Sep 29 2000
Comments