A027639 Order of unitary 2^n X 2^n group H_{n,4} acting on Siegel modular forms.
4, 32, 3072, 2752512, 21139292160, 1342091380654080, 692647993190048071680, 2882479558988139892026900480, 96342151992701835341576224427212800, 25811138467998276182105365247324712232550400
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..45
- Bernhard Runge, On Siegel modular forms. Part I, J. Reine Angew. Math., 436 (1993), 57-85.
- Bernhard Runge, Codes and Siegel modular forms, Discrete Math. 148 (1996), 175-204.
- Index entries for sequences related to modular groups.
Programs
-
Magma
A027639:= func< n | n eq 0 select 4 else 2^(n^2+2*n+2)*(&*[2^j-1: j in [1..n]]) >; [A027639(n): n in [0..15]]; // G. C. Greubel, Aug 04 2022
-
Maple
seq(2^(n^2+2*n+2)*mul(2^i-1, i=1..n), n=0..10);
-
Mathematica
a[n_]:= (-1)^n*2^(n^2 +2*n+2)*QPochhammer[2,2,n]; Table[a[n], {n, 0, 15}] (* G. C. Greubel, Aug 04 2022 *)
-
PARI
a(n) = my(ret=1); for(i=1,n, ret = ret<
Kevin Ryde, Aug 13 2022 -
SageMath
from sage.combinat.q_analogues import q_pochhammer def A027639(n): return (-1)^n*2^(n^2 + 2*n + 2)*q_pochhammer(n, 2, 2) [A027639(n) for n in (0..15)] # G. C. Greubel, Aug 04 2022
Formula
a(n) = 2^(n^2 + 2*n + 2) * Product_{j=1..n} (2^j - 1).
a(n) = (-1)^n * 2^(n^2 + 2*n + 2) * (2, 2){n}, where (q, q){n} is the q-Pochhammer symbol. - G. C. Greubel, Aug 04 2022
a(n) ~ c * 2^((3*n^2+5*n+4)/2), where c = A048651. - Amiram Eldar, Jul 09 2025