cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027640 Poincaré series [or Poincare series] for ring of modular forms of genus 2.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 3, 0, 2, 0, 4, 0, 4, 0, 5, 0, 6, 0, 8, 0, 7, 0, 10, 0, 11, 0, 12, 0, 14, 1, 17, 0, 16, 1, 21, 1, 22, 1, 24, 2, 27, 3, 31, 2, 31, 4, 37, 4, 39, 5, 42, 6, 46, 8, 52, 7, 52, 10, 60, 11, 63, 12, 67, 14, 73, 17, 80, 16, 81, 21, 91, 22, 95
Offset: 0

Views

Author

Keywords

Comments

a(k) for k>0 is the dimension of the space of Siegel modular forms of genus 2 and weight k (for the full modular group Gamma_2). - Kilian Kilger (kilian(AT)nihilnovi.de), Sep 24 2009

Crossrefs

Cf. A165685 for the corresponding dimension of the space of cusp forms. - Kilian Kilger (kilian(AT)nihilnovi.de), Sep 24 2009

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 100); Coefficients(R!( (1+x^35)/((1-x^4)*(1-x^6)*(1-x^10)*(1-x^12)) )); // G. C. Greubel, Aug 04 2022
    
  • Mathematica
    Table[SeriesCoefficient[Series[(1+t^(35))/((1-t^4) (1-t^6)(1-t^(10)) (1-t^(12))), {t, 0,100}], i], {i, 0, 100}] (* Kilian Kilger (kilian(AT)nihilnovi.de), Sep 24 2009 *)
  • PARI
    Vec((1+x^35)/((1-x^4)*(1-x^6)*(1-x^10)*(1-x^12)) + O(x^100)) \\ Colin Barker, Jul 27 2019
    
  • Sage
    def A027640_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x^35)/((1-x^4)*(1-x^6)*(1-x^10)*(1-x^12)) ).list()
    A027640_list(100) # G. C. Greubel, Aug 04 2022

Formula

G.f.: (1+x^35)/((1-x^4)*(1-x^6)*(1-x^10)*(1-x^12)).