A027640 Poincaré series [or Poincare series] for ring of modular forms of genus 2.
1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 3, 0, 2, 0, 4, 0, 4, 0, 5, 0, 6, 0, 8, 0, 7, 0, 10, 0, 11, 0, 12, 0, 14, 1, 17, 0, 16, 1, 21, 1, 22, 1, 24, 2, 27, 3, 31, 2, 31, 4, 37, 4, 39, 5, 42, 6, 46, 8, 52, 7, 52, 10, 60, 11, 63, 12, 67, 14, 73, 17, 80, 16, 81, 21, 91, 22, 95
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- J. Igusa, On Siegel modular forms of genus 2 (II), Amer. J. Math., 86 (1964), 392-412, esp. p. 402.
- Bernhard Runge, On Siegel modular forms. Part I, J. Reine Angew. Math., 436 (1993), 57-85.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,1,1,1,0,0,-1,-1,-1,1,0,0,1,-1,-1,-1,0,0,1,1,1,0,0,0,-1).
Crossrefs
Cf. A165685 for the corresponding dimension of the space of cusp forms. - Kilian Kilger (kilian(AT)nihilnovi.de), Sep 24 2009
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 100); Coefficients(R!( (1+x^35)/((1-x^4)*(1-x^6)*(1-x^10)*(1-x^12)) )); // G. C. Greubel, Aug 04 2022 -
Mathematica
Table[SeriesCoefficient[Series[(1+t^(35))/((1-t^4) (1-t^6)(1-t^(10)) (1-t^(12))), {t, 0,100}], i], {i, 0, 100}] (* Kilian Kilger (kilian(AT)nihilnovi.de), Sep 24 2009 *)
-
PARI
Vec((1+x^35)/((1-x^4)*(1-x^6)*(1-x^10)*(1-x^12)) + O(x^100)) \\ Colin Barker, Jul 27 2019
-
Sage
def A027640_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x^35)/((1-x^4)*(1-x^6)*(1-x^10)*(1-x^12)) ).list() A027640_list(100) # G. C. Greubel, Aug 04 2022
Formula
G.f.: (1+x^35)/((1-x^4)*(1-x^6)*(1-x^10)*(1-x^12)).
Comments