A027762 Denominator of Sum_{p prime, p-1 divides 2*n} 1/p.
6, 30, 42, 30, 66, 2730, 6, 510, 798, 330, 138, 2730, 6, 870, 14322, 510, 6, 1919190, 6, 13530, 1806, 690, 282, 46410, 66, 1590, 798, 870, 354, 56786730, 6, 510, 64722, 30, 4686, 140100870, 6, 30, 3318, 230010, 498, 3404310, 6, 61410, 272118, 1410, 6, 4501770
Offset: 1
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Th. 118.
- H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.
Links
- R. Mestrovic, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.
- Index entries for sequences related to Bernoulli numbers.
Programs
-
PARI
a(n)= { my(s=0); forprime (p=2, 2*n+1, if( (2*n)%(p-1)==0, s+=1/p ) ); return( denominator(s) ); } /* Joerg Arndt, May 06 2012 */
Formula
a(n) = A002445(n). [Joerg Arndt, May 06 2012]
a(n) = A027760(2*n). - Ridouane Oudra, Feb 22 2022
Comments