cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027762 Denominator of Sum_{p prime, p-1 divides 2*n} 1/p.

Original entry on oeis.org

6, 30, 42, 30, 66, 2730, 6, 510, 798, 330, 138, 2730, 6, 870, 14322, 510, 6, 1919190, 6, 13530, 1806, 690, 282, 46410, 66, 1590, 798, 870, 354, 56786730, 6, 510, 64722, 30, 4686, 140100870, 6, 30, 3318, 230010, 498, 3404310, 6, 61410, 272118, 1410, 6, 4501770
Offset: 1

Views

Author

Keywords

Comments

From the von Staudt-Clausen theorem, denominator(B_2n) = product of primes p such that (p-1)|2n.
Same as A002445.

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Th. 118.
  • H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.

Crossrefs

Programs

  • PARI
    a(n)=
    {
        my(s=0);
        forprime (p=2, 2*n+1, if( (2*n)%(p-1)==0, s+=1/p ) );
        return( denominator(s) );
    }
    /* Joerg Arndt, May 06 2012 */

Formula

a(n) = A002445(n). [Joerg Arndt, May 06 2012]
a(n) = A027760(2*n). - Ridouane Oudra, Feb 22 2022