cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A165949 a(n) = A027762(n)/A165734(n).

Original entry on oeis.org

1, 1, 7, 1, 11, 91, 1, 17, 133, 11, 23, 91, 1, 29, 2387, 17, 1, 63973, 1, 451, 301, 23, 47, 1547, 11, 53, 133, 29, 59, 1892891, 1, 17, 10787, 1, 781, 4670029, 1, 1, 553, 7667, 83, 113477, 1, 2047, 45353, 47, 1, 150059, 1, 1111, 721, 53, 107, 6973057, 253, 55709, 7
Offset: 1

Views

Author

Paul Curtz, Oct 01 2009

Keywords

Crossrefs

Cf. A124886.

Programs

  • Maple
    A165734 := proc(n) op( 1+(n mod 2),[30,6]) ; end:
    A027762 := proc(n) a := 0 ; p := 2 ; while p-1 <= 2*n do if (2*n) mod (p-1) = 0 then a := a+1/p ; fi; p := nextprime(p) ; od: denom(a) ; end:
    A165949 := proc(n) A027762(n)/A165734(n) ; end: seq(A165949(n),n=1..80) ; # R. J. Mathar, Oct 05 2009
  • Mathematica
    a[n_] := Numerator[ Denominator[ BernoulliB[2*n, 1/2]]/(3*5*2^(2*n))]; Array[a, 57] (* Jean-François Alcover, Apr 17 2013, after Paul Curtz *)

Extensions

Extended by R. J. Mathar, Oct 05 2009

A002445 Denominators of Bernoulli numbers B_{2n}.

Original entry on oeis.org

1, 6, 30, 42, 30, 66, 2730, 6, 510, 798, 330, 138, 2730, 6, 870, 14322, 510, 6, 1919190, 6, 13530, 1806, 690, 282, 46410, 66, 1590, 798, 870, 354, 56786730, 6, 510, 64722, 30, 4686, 140100870, 6, 30, 3318, 230010, 498, 3404310, 6, 61410, 272118, 1410, 6, 4501770, 6, 33330, 4326, 1590, 642, 209191710, 1518, 1671270, 42
Offset: 0

Views

Author

Keywords

Comments

From the von Staudt-Clausen theorem, denominator(B_2n) = product of primes p such that (p-1)|2n.
Row products of A138239. - Mats Granvik, Mar 08 2008
Equals row products of even rows in triangle A143343. In triangle A080092, row products = denominators of B1, B2, B4, B6, ... . - Gary W. Adamson, Aug 09 2008
Julius Worpitzky's 1883 algorithm for generating Bernoulli numbers is shown in A028246. - Gary W. Adamson, Aug 09 2008
There is a relation between the Euler numbers E_n and the Bernoulli numbers B_{2*n}, for n>0, namely, B_{2*n} = A000367(n)/a(n) = ((-1)^n/(2*(1-2^{2*n}))) * Sum_{k = 0..n-1} (-1)^k*2^{2*k}*C(2*n,2*k)*A000364(n-k)*A000367(k)/a(k). (See Bucur, et al.) - L. Edson Jeffery, Sep 17 2012
a(n) is the product of all primes of the form (k + n)/(k - n). - Thomas Ordowski, Jul 24 2025

Examples

			B_{2n} = [ 1, 1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, 7/6, -3617/510, ... ].
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 932.
  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 136.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • See A000367 for further references and links (there are a lot).

Crossrefs

Cf. A090801 (distinct numbers appearing as denominators of Bernoulli numbers)
B_n gives A027641/A027642. See A027641 for full list of references, links, formulas, etc.
Cf. A160014 for a generalization.

Programs

  • Magma
    [Denominator(Bernoulli(2*n)): n in [0..60]]; // Vincenzo Librandi, Nov 16 2014
    
  • Maple
    A002445 := n -> mul(i,i=select(isprime,map(i->i+1,numtheory[divisors] (2*n)))): seq(A002445(n),n=0..40); # Peter Luschny, Aug 09 2011
    # Alternative
    N:= 1000: # to get a(0) to a(N)
    A:= Vector(N,2):
    for p in select(isprime,[seq(2*i+1,i=1..N)]) do
      r:= (p-1)/2;
      for n from r to N by r do
        A[n]:= A[n]*p
      od
    od:
    1, seq(A[n],n=1..N); # Robert Israel, Nov 16 2014
  • Mathematica
    Take[Denominator[BernoulliB[Range[0,100]]],{1,-1,2}] (* Harvey P. Dale, Oct 17 2011 *)
  • PARI
    a(n)=prod(p=2,2*n+1,if(isprime(p),if((2*n)%(p-1),1,p),1)) \\ Benoit Cloitre
    
  • PARI
    A002445(n,P=1)=forprime(p=2,1+n*=2,n%(p-1)||P*=p);P \\ M. F. Hasler, Jan 05 2016
    
  • PARI
    a(n) = denominator(bernfrac(2*n)); \\ Michel Marcus, Jul 16 2021
    
  • Sage
    def A002445(n):
        if n == 0:
            return 1
        M = (i + 1 for i in divisors(2 * n))
        return prod(s for s in M if is_prime(s))
    [A002445(n) for n in (0..57)] # Peter Luschny, Feb 20 2016

Formula

E.g.f: x/(exp(x) - 1); take denominators of even powers.
B_{2n}/(2n)! = 2*(-1)^(n-1)*(2*Pi)^(-2n) Sum_{k=1..inf} 1/k^(2n) (gives asymptotics) - Rademacher, p. 16, Eq. (9.1). In particular, B_{2*n} ~ (-1)^(n-1)*2*(2*n)!/ (2*Pi)^(2*n).
If n>=3 is prime,then a((n+1)/2)==(-1)^((n-1)/2)*12*|A000367((n+1)/2)|(mod n). - Vladimir Shevelev, Sep 04 2010
a(n) = denominator(-I*(2*n)!/(Pi*(1-2*n))*integral(log(1-1/t)^(1-2*n) dt, t=0..1)). - Gerry Martens, May 17 2011
a(n) = 2*denominator((2*n)!*Li_{2*n}(1)) for n > 0. - Peter Luschny, Jun 28 2012
a(n) = gcd(2!S(2n+1,2),...,(2n+1)!S(2n+1,2n+1)). Here S(n,k) is the Stirling number of the second kind. See the paper of Komatsu et al. - Istvan Mezo, May 12 2016
a(n) = 2*A001897(n) = A027642(2*n) = 3*A277087(n) for n>0. - Jonathan Sondow, Dec 14 2016

A249134 Numbers k such that Bernoulli number B_k has denominator 2730.

Original entry on oeis.org

12, 24, 1308, 1884, 2004, 2364, 2532, 2724, 3804, 4008, 4044, 4188, 4236, 4668, 5052, 5064, 5268, 5388, 5484, 6252, 6492, 6564, 6756, 6852, 7044, 7188, 7356, 7404, 7608, 7764, 8124, 8412, 8472, 8796, 9084, 9228, 9852, 9876, 9924
Offset: 1

Views

Author

Keywords

Comments

2730 = 2 * 3 * 5 * 7 * 13.

Examples

			BernoulliB(12) is -691/2730, hence 12 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 0, n <= 10^4, n = n+12, If[Denominator[BernoulliB[n]] == 2730, Print[n]; Sow[n]]]][[2, 1]]
    Select[Table[n, {n, 2, 10000}], Denominator@BernoulliB[#]==2730 &] (* Vincenzo Librandi, Apr 02 2015 *)
  • PARI
    is(n)=denominator(bernfrac(n))==2730 \\ Charles R Greathouse IV, Oct 22 2014
    
  • PARI
    is(n)=if(n%12 || n%16==0 || n%9==0, return(0)); forprime(p=5,107, if(n%p==0, return(0))); fordiv(n,d, if(isprime(d+1) && d>13, return(0))); 1 \\ Charles R Greathouse IV, Oct 22 2014

A006954 Denominators of Bernoulli numbers B_0, B_1, B_2, B_4, B_6, ...

Original entry on oeis.org

1, 2, 6, 30, 42, 30, 66, 2730, 6, 510, 798, 330, 138, 2730, 6, 870, 14322, 510, 6, 1919190, 6, 13530, 1806, 690, 282, 46410, 66, 1590, 798, 870, 354, 56786730, 6, 510, 64722, 30, 4686, 140100870, 6, 30, 3318, 230010, 498, 3404310, 6, 61410, 272118, 1410, 6, 4501770
Offset: 0

Views

Author

Keywords

Comments

These are the denominators if you hurriedly look down a list of the nonzero Bernoulli numbers without noticing that B_1 has been included.
From the von Staudt-Clausen theorem, denominator(B_2n) = product of primes p such that (p-1)|2n.

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 260.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.1, p. 41.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Th. 118.
  • H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Join[{1,2},Denominator[BernoulliB[Range[2,100,2]]]] (* Harvey P. Dale, Apr 11 2016 *)

Formula

E.g.f: t/(e^t - 1).

Extensions

More terms from T. D. Noe, Mar 31 2004

A027761 Numerator of sum_{p prime, p-1 divides 2*n} 1/p.

Original entry on oeis.org

5, 31, 41, 31, 61, 3421, 5, 557, 821, 371, 121, 3421, 5, 929, 15745, 557, 5, 2557843, 5, 15541, 1805, 743, 241, 60887, 61, 1673, 821, 929, 301, 79085411, 5, 557, 66961, 31, 4397, 188641729, 5, 31, 3281, 277727, 421, 4462547, 5, 66817, 313477, 1487, 5, 5952449
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A027762.

Programs

  • Mathematica
    a[n_] := Sum[ Boole[ PrimeQ[d+1] ]/(d+1), {d, Divisors[2n]}] // Numerator; Table[a[n], {n, 1, 48}] (* Jean-François Alcover, Aug 10 2012 *)
  • PARI
    a(n)=
    {
        my(bd=0);
        forprime (p=2, 2*n+1, if( (2*n)%(p-1)==0, bd += 1/p;  ) );
        bd = numerator(bd);
        return(bd);
    }
    /* Joerg Arndt, May 06 2012 */

A140814 a(0)=3, a(n)=A002445(n) for n >= 1.

Original entry on oeis.org

3, 6, 30, 42, 30, 66, 2730, 6, 510, 798, 330, 138, 2730, 6, 870, 14322, 510, 6, 1919190, 6, 13530, 1806, 690, 282, 46410, 66, 1590, 798, 870, 354, 56786730, 6, 510, 64722, 30, 4686, 140100870, 6, 30, 3318, 230010, 498, 3404310, 6, 61410, 272118, 1410, 6
Offset: 0

Views

Author

Paul Curtz, Jul 16 2008

Keywords

Crossrefs

Programs

  • Magma
    [3] cat [Denominator(Bernoulli(2*n)): n in [1..60]]; // Vincenzo Librandi, Nov 04 2018
  • Mathematica
    Join[{3}, Table[Denominator[BernoulliB[2 n]], {n, 60}]] (* Vincenzo Librandi, Nov 04 2018 *)

Formula

a(n) = A106458(2*n) + A106458(2*n+1).
a(n) = A027762(n) for n >= 1. - Georg Fischer, Nov 03 2018

Extensions

Edited and extended by R. J. Mathar, Jul 29 2008

A216639 A027642(6*n+6)/(sequence of period 2:repeat 42,210).

Original entry on oeis.org

1, 13, 19, 13, 341, 9139, 43, 221, 19, 270413, 1541, 667147, 79, 16211, 6479, 21437, 103, 996151, 1, 11086933, 103759, 20033, 6533, 11341499, 51491, 8545667, 3097, 16211, 59, 34408161359, 1, 4137341, 5826521, 1339, 219666403, 72719023, 223, 2977, 1501, 45423164501, 83
Offset: 0

Views

Author

Paul Curtz, Sep 12 2012

Keywords

Comments

Is a(n) always an integer? Is there an a(n) ending with 5?
It appears (tested for n <= 800) that a(n) mod 9 is always one of {1, 2, 4, 5, 7, 8}.
There is a similar sequence of ratios A027642(10n+1)/(66*A010686(n)) which starts 1, 1, 217, 41, 1, 172081, 71, 697, 4123, 101, 23, 7055321, 131, 2059, 32767, 697, 1, 21896102683,...
a(n) is always an integer: 42 = 2*3*7 and 1, 2, and 6 divide 12n+6; 210 = 2*3*5*7 and 1, 2, 4, and 6 divide 12n+12. a(n) never ends in 5 (or 0) since 12n+6 is not divisible by 4 hence the (12n+6)-th Bernoulli denominator is not divisible by 5, and Bernoulli denominators are squarefree and hence the (12n+12)-th Bernoulli denominator, divided by 210, cannot be divisible by 5. - Charles R Greathouse IV, Sep 12 2012
The previous comments argue that 3 or 5 are never prime divisors of a(n). In addition (tested up to n <=900), 7 apparently is also a non-divisor of a(n). In summary, the prime divisors appear all to be in A140461. - Jean-François Alcover, Sep 17 2012

Crossrefs

Programs

Formula

a(n) = A027642(6*n+6)/(42*A010686(n)).

Extensions

a(20)-a(40) from Charles R Greathouse IV, Sep 12 2012

A212655 Denominator of Bernoulli(2*n,1/2) / Period of length 2: repeat 12, 60.

Original entry on oeis.org

1, 4, 112, 64, 2816, 93184, 4096, 278528, 8716288, 2883584
Offset: 1

Views

Author

Paul Curtz, Apr 14 2013

Keywords

Comments

See A165949(n) = (A027642(n+1)=A027762(n))/A165734(n).
a(n) is divisible by 4^(n-1).

Examples

			a(1) = (B(2,1/2)=12)/12=1, a(2)=240/60=4, a(3)=1344/12=112, a(4)=3840/60=64.
		

Crossrefs

Cf. A000302.

Formula

a(n) = A033469(n)/A040874(n).
a(n) = 4^(n-1) * A165949(n).
Showing 1-8 of 8 results.