A193267 The number 1 alternating with the numbers A006953/A002445 (which are integers).
1, 2, 1, 4, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 16, 1, 18, 1, 20, 1, 2, 1, 24, 1, 2, 1, 4, 1, 6, 1, 32, 1, 2, 1, 36, 1, 2, 1, 40, 1, 42, 1, 4, 1, 2, 1, 48, 1, 2, 1, 4, 1, 54, 1, 8, 1, 2, 1, 60, 1, 2, 1, 64, 1, 6, 1, 4, 1, 2, 1, 72, 1, 2, 1, 4, 1, 6, 1, 80, 1, 2, 1, 84, 1, 2, 1, 8, 1, 18, 1, 4, 1, 2, 1, 96, 1, 2, 1, 100
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..2000
Programs
-
Julia
using Nemo function A193267(n) P = 1 for (p, e) in factor(ZZ(n)) divisible(ZZ(n), p - 1) && (P *= p^e) end P end [A193267(n) for n in 1:100] |> println # Peter Luschny, Mar 12 2018
-
Magma
[Denominator(Bernoulli(n)/n)/Denominator(Bernoulli(n)): n in [1..100]]; // Vincenzo Librandi, Mar 12 2018
-
Maple
with(numtheory); a := proc(n) divisors(n); map(i->i+1, %); select(isprime, %); mul(k^padic[ordp](n,k),k=%) end: seq(a(n), n=1..100); # Peter Luschny, Mar 12 2018 # Alternatively: A193267 := proc(n) local P, F, f, divides; divides := (a,b) -> is(irem(b,a) = 0): P := 1; F := ifactors(n)[2]; for f in F do if divides(f[1]-1, n) then P := P*f[1]^f[2] fi od; P end: seq(A193267(n), n=1..100); # Peter Luschny, Mar 12 2018
-
Mathematica
a[n_] := If[OddQ[n], 1, Denominator[ BernoulliB[n]/n ] / Denominator[ BernoulliB[n]] ]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Dec 21 2012 *)
Comments