A047222 Numbers that are congruent to {0, 2, 3} mod 5.
0, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 20, 22, 23, 25, 27, 28, 30, 32, 33, 35, 37, 38, 40, 42, 43, 45, 47, 48, 50, 52, 53, 55, 57, 58, 60, 62, 63, 65, 67, 68, 70, 72, 73, 75, 77, 78, 80, 82, 83, 85, 87, 88, 90, 92, 93, 95, 97, 98, 100, 102, 103, 105, 107
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Craig Knecht, Row sum for the 1,2,2 triangle with 2 at the top.
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 5 in [0, 2, 3]]; // Wesley Ivan Hurt, Jun 14 2016
-
Maple
A047222 := n -> 2*n - 2 - iquo(n,3): seq(A047222(n), n=1..100); # Wesley Ivan Hurt, Nov 07 2013
-
Mathematica
Floor[(Range[5, 305, 5] - 4)/3] (* Vladimir Joseph Stephan Orlovsky, Jan 26 2012 *) Flatten[Table[5n + {0, 2, 3}, {n, 0, 19}]] (* Alonso del Arte, Nov 07 2013 *) LinearRecurrence[{1, 0, 1, -1}, {0, 2, 3, 5}, 100] (* Vincenzo Librandi, Jun 15 2016 *)
-
PARI
a(n)=(5*n-4)\3 \\ Charles R Greathouse IV, Oct 28 2011
-
PARI
concat(0, Vec(x^2*(2+x+2*x^2)/((1-x)^2*(1+x+x^2)) + O(x^100))) \\ Altug Alkan, Oct 26 2015
Formula
From R. J. Mathar, Oct 18 2008: (Start)
G.f.: x^2*(2 + x + 2*x^2)/((1 - x)^2*(1 + x + x^2)).
a(n) = A028738(n-2), 1 < n < 16. (End)
a(n) = floor((5*n-4)/3). - Gary Detlefs, Oct 28 2011
a(n) = 2*n - 2 - floor(n/3). - Wesley Ivan Hurt, Nov 07 2013
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (15*n-15-3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 5k-2, a(3k-1) = 5k-3, a(3k-2) = 5k-5. (End)
a(n) = n - 1 + floor((2n-1)/3). - Wesley Ivan Hurt, Dec 27 2016
Sum_{n>=2} (-1)^n/a(n) = arccoth(3/sqrt(5))/sqrt(5) - log(2)/5. - Amiram Eldar, Dec 10 2021
From Peter Bala, Aug 04 2022: (Start)
a(n) = a(floor(n/2)) + a(1 + ceiling(n/2)) for n >= 4 with a(1) = 0, a(2) = 2 and a(3) = 3.
Comments