cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A191738 Dispersion of A047222, (numbers >1 and congruent to 0 or 2 or 3 mod 5), by antidiagonals.

Original entry on oeis.org

1, 2, 4, 3, 7, 6, 5, 12, 10, 9, 8, 20, 17, 15, 11, 13, 33, 28, 25, 18, 14, 22, 55, 47, 42, 30, 23, 16, 37, 92, 78, 70, 50, 38, 27, 19, 62, 153, 130, 117, 83, 63, 45, 32, 21, 103, 255, 217, 195, 138, 105, 75, 53, 35, 24, 172, 425, 362, 325, 230, 175, 125, 88
Offset: 1

Views

Author

Clark Kimberling, Jun 14 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
For further information about these 20 dispersions, see A191722.
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....2....3....5....8
4....7....12...20...33
6....10...17...28...47
9....15...25...42...70
11...18...30...50...83
14...23...38...63...105
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=2; b=3; c2=5; m[n_]:=If[Mod[n,3]==0,1,0];
    f[n_]:=a*m[n+2]+b*m[n+1]+c2*m[n]+5*Floor[(n-1)/3]
    Table[f[n], {n, 1, 30}]  (* A047222 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191738 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191738  *)

A042965 Nonnegative integers not congruent to 2 mod 4.

Original entry on oeis.org

0, 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 87, 88, 89, 91, 92
Offset: 1

Views

Author

Keywords

Comments

Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence (starting at 3) gives values of AUB, sorted and duplicates removed. Values of AUBUC give same sequence. - David W. Wilson
These are the nonnegative integers that can be written as a difference of two squares, i.e., n = x^2 - y^2 for integers x,y. - Sharon Sela (sharonsela(AT)hotmail.com), Jan 25 2002. Equivalently, nonnegative numbers represented by the quadratic form x^2-y^2 of discriminant 4. The primes in this sequence are all the odd primes. - N. J. A. Sloane, May 30 2014
Numbers n such that Kronecker(4,n) == mu(gcd(4,n)). - Jon Perry, Sep 17 2002
Count, sieving out numbers of the form 2*(2*n+1) (A016825, "nombres pair-impairs"). A generalized Chebyshev transform of the Jacobsthal numbers: apply the transform g(x) -> (1/(1+x^2)) g(x/(1+x^2)) to the g.f. of A001045(n+2). Partial sums of 1,2,1,1,2,1,.... - Paul Barry, Apr 26 2005
For n>1, equals union of A020883 and A020884. - Lekraj Beedassy, Sep 28 2004
The sequence 1,1,3,4,5,... is the image of A001045(n+1) under the mapping g(x) -> g(x/(1+x^2)). - Paul Barry, Jan 16 2005
With offset 0 starting (1, 3, 4,...) = INVERT transform of A009531 starting (1, 2, -1, -4, 1, 6,...) with offset 0.
Apparently these are the regular numbers modulo 4 [Haukkanan & Toth]. - R. J. Mathar, Oct 07 2011
Numbers of the form x*y in nonnegative integers x,y with x+y even. - Michael Somos, May 18 2013
Convolution of A106510 with A000027. - L. Edson Jeffery, Jan 24 2015
Numbers that are the sum of zero or more consecutive odd positive numbers. - Gionata Neri, Sep 01 2015
Numbers that are congruent to {0, 1, 3} mod 4. - Wesley Ivan Hurt, Jun 10 2016
Nonnegative integers of the form (2+(3*m-2)/4^j)/3, j,m >= 0. - L. Edson Jeffery, Jan 02 2017
This is { x^2 - y^2; x >= y >= 0 }; with the restriction x > y one gets the same set without zero; with the restriction x > 0 (i.e., differences of two nonzero squares) one gets the set without 1. An odd number 2n-1 = n^2 - (n-1)^2, a number 4n = (n+1)^2 - (n-1)^2. - M. F. Hasler, May 08 2018

Examples

			G.f. = x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 7*x^6 + 8*x^7 + 9*x^8 + 11*x^9 + 12*x^10 + ...
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section D9.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 83.

Crossrefs

Essentially the complement of A016825.
See A267958 for these numbers multiplied by 4.

Programs

  • Haskell
    a042965 =  (`div` 3) . (subtract 3) . (* 4)
    a042965_list = 0 : 1 : 3 : map (+ 4) a042965_list
    -- Reinhard Zumkeller, Nov 09 2012
    
  • Magma
    [n: n in [0..100] | not n mod 4 in [2]]; // Vincenzo Librandi, Sep 03 2015
    
  • Maple
    a_list := proc(len) local rec; rec := proc(n) option remember;
    ifelse(n <= 4, [0, 1, 3, 4][n], rec(n-1) + rec(n-3) - rec(n-4)) end:
    seq(rec(n), n=1..len) end: a_list(76); # Peter Luschny, Aug 06 2022
  • Mathematica
    nn=100; Complement[Range[0,nn], Range[2,nn,4]] (* Harvey P. Dale, May 21 2011 *)
    f[n_]:=Floor[(4*n-3)/3]; Array[f,70] (* Robert G. Wilson v, Jun 26 2012 *)
    LinearRecurrence[{1, 0, 1, -1}, {0, 1, 3, 4}, 70] (* L. Edson Jeffery, Jan 21 2015 *)
    Select[Range[0, 100], ! MemberQ[{2}, Mod[#, 4]] &] (* Vincenzo Librandi, Sep 03 2015 *)
  • PARI
    a(n)=(4*n-3)\3 \\ Charles R Greathouse IV, Jul 25 2011
    
  • Python
    def A042965(n): return (n<<2)//3-1 # Chai Wah Wu, Feb 10 2025

Formula

Recurrence: a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = n - 1 + (3n-3-sqrt(3)*(1-2*cos(2*Pi*(n-1)/3))*sin(2*Pi*(n-1)/3))/9. Partial sums of the period-3 sequence 0, 1, 1, 2, 1, 1, 2, 1, 1, 2, ... (A101825). - Ralf Stephan, May 19 2013
G.f.: A(x) = x^2*(1+x)^2/((1-x)^2*(1+x+x^2)); a(n)=Sum{k=0..floor(n/2)}, binomial(n-k-1, k)*A001045(n-2*k), n>0. - Paul Barry, Jan 16 2005, R. J. Mathar, Dec 09 2009
a(n) = floor((4*n-3)/3). - Gary Detlefs, May 14 2011
A214546(a(n)) != 0. - Reinhard Zumkeller, Jul 20 2012
From Michael Somos, May 18 2013: (Start)
Euler transform of length 3 sequence [3, -2, 1].
a(2-n) = -a(n). (End)
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = (12*n-12+3*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 4k-1, a(3k-1) = 4k-3, a(3k-2) = 4k-4. (End)
a(n) = round((4*n-4)/3). - Mats Granvik, Sep 24 2016
The g.f. A(x) satisfies (A(x)/x)^2 + A(x)/x = x*B(x)^2, where B(x) is the o.g.f. of A042968. - Peter Bala, Apr 12 2017
Sum_{n>=2} (-1)^n/a(n) = log(sqrt(2)+2)/sqrt(2) - (sqrt(2)-1)*log(2)/4. - Amiram Eldar, Dec 05 2021
From Peter Bala, Aug 03 2022: (Start)
a(n) = a(floor(n/2)) + a(1 + ceiling(n/2)) for n >= 2, with a(2) = 1 and a(3) = 3.
a(2*n) = a(n) + a(n+1); a(2*n+1) = a(n) + a(n+2). Cf. A047222 and A006165. (End)
E.g.f.: (9 + 12*exp(x)*(x - 1) + exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)))/9. - Stefano Spezia, Apr 05 2023

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Peter Pein and Ralf Stephan, Jun 17 2007
Typos fixed in Gary Detlefs's formula and in PARI program by Reinhard Zumkeller, Nov 09 2012

A008854 Numbers that are congruent to {0, 1, 4} mod 5.

Original entry on oeis.org

0, 1, 4, 5, 6, 9, 10, 11, 14, 15, 16, 19, 20, 21, 24, 25, 26, 29, 30, 31, 34, 35, 36, 39, 40, 41, 44, 45, 46, 49, 50, 51, 54, 55, 56, 59, 60, 61, 64, 65, 66, 69, 70, 71, 74, 75, 76, 79, 80, 81, 84, 85, 86, 89, 90, 91, 94, 95, 96, 99, 100, 101, 104, 105, 106, 109
Offset: 1

Views

Author

Keywords

Comments

n^3 and n have the same last digit.
Partial sums of (0, 1, 3, 1, 1, 3, 1, 1, 3, 1, ...). - Gary W. Adamson, Jun 19 2008
Row sum of a triangle where every "triple" contains 1,2,2. - Craig Knecht, Jul 30 2015
Nonnegative m such that floor(k*m^2/5) = k*floor(m^2/5), where k = 2, 3 or 4. - Bruno Berselli, Dec 03 2015

References

  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 459.

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 5 in [0, 1, 4]]; // Wesley Ivan Hurt, Jun 14 2016
    
  • Maple
    for n to 1000 do if n^3 - n mod 10 = 0 then print(n); fi; od;
  • Mathematica
    Select[Range[0, 150], MemberQ[{0, 1, 4}, Mod[#, 5]] &] (* or *) LinearRecurrence[{1, 0, 1, -1}, {0, 1, 4, 5}, 91] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *)
    CoefficientList[Series[x (1 + 3 x + x^2) / ((1 + x + x^2) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
  • PARI
    concat(0, Vec(x^2*(1+3*x+x^2)/((1+x+x^2)*(x-1)^2) + O(x^100))) \\ Altug Alkan, Dec 03 2015
    
  • PARI
    a(n) = vecsum(divrem(5*n-7,3)); \\ Kevin Ryde, Aug 08 2022
    
  • Python
    def a(n): return sum(divmod(5*n-7, 3))
    print([a(n) for n in range(1, 67)]) # Michael S. Branicky, Aug 08 2022 after Kevin Ryde

Formula

G.f.: x^2*(1+3*x+x^2) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
a(n) = A047217(n+1)-1. - R. J. Mathar, Aug 04 2015
E.g.f: (5/3)*(x-1)*exp(x) + (2/3)*exp(-x/2)*cos(sqrt(3)*x/2) + (2/9)*exp(-x/2)*sin(sqrt(3)*x/2) + 1. - Robert Israel, Aug 04 2015
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (15*n-15+6*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 5k-1, a(3k-1) = 5k-4, a(3k-2) = 5k-5. (End)
a(n) = 5*n/3 - 2*(n mod 3)/3 - 1. - Ammar Khatab, Aug 26 2020
Sum_{n>=2} (-1)^n/a(n) = 3*log(2)/5 - arccoth(3/sqrt(5))/sqrt(5). - Amiram Eldar, Dec 10 2021
From Peter Bala, Aug 04 2022: (Start)
a(n) = a(floor(n/2)) + a(1 + ceiling(n/2)) for n >= 4 with a(1) = 0, a(2) = 1 and a(3) = 4.
a(2*n) = a(n) + a(n+1); a(2*n+1) = a(n) + a(n+2). Cf. A047222 and A042965. (End)

A191722 Dispersion of A008851, (numbers >1 and congruent to 0 or 1 mod 5), by antidiagonals.

Original entry on oeis.org

1, 5, 2, 15, 6, 3, 40, 16, 10, 4, 101, 41, 26, 11, 7, 255, 105, 66, 30, 20, 8, 640, 265, 166, 76, 51, 21, 9, 1601, 665, 416, 191, 130, 55, 25, 12, 4005, 1665, 1041, 480, 326, 140, 65, 31, 13, 10015, 4165, 2605, 1201, 816, 351, 165, 80, 35, 14, 25040, 10415
Offset: 1

Views

Author

Clark Kimberling, Jun 13 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
A191722 has 1st col A047202, all else A008851
A191723 has 1st col A047206, all else A047215
A191724 has 1st col A032793, all else A047218
A191725 has 1st col A047223, all else A047208
A191726 has 1st col A047205, all else A047216
A191727 has 1st col A047212, all else A047219
A191728 has 1st col A047222, all else A047209
A191729 has 1st col A008854, all else A047221
A191730 has 1st col A047220, all else A047211
A191731 has 1st col A047217, all else A047204
...
A191732 has 1st col A000851, all else A047202
A191733 has 1st col A047215, all else A047206
A191734 has 1st col A047218, all else A032793
A191735 has 1st col A047208, all else A047223
A191736 has 1st col A047216, all else A047205
A191737 has 1st col A047219, all else A047212
A191738 has 1st col A047209, all else A047222
A191739 has 1st col A047221, all else A008854
A191740 has 1st col A047211, all else A047220
A191741 has 1st col A047204, all else A047217
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....5....15...40...101
2....6....16...41...105
3....10...26...66...166
4....11...30...76...191
7....20...51...130..326
8....21...55...140..351
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=5; b=6; m[n_]:=If[Mod[n,2]==0,1,0];
    f[n_]:=a*m[n+1]+b*m[n]+5*Floor[(n-1)/2]
    Table[f[n], {n, 1, 30}]  (* A008851 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
    (* A191722 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191722  *)

A191723 Dispersion of A047215, (numbers >1 and congruent to 0 or 2 mod 5), by antidiagonals.

Original entry on oeis.org

1, 2, 3, 5, 7, 4, 12, 17, 10, 6, 30, 42, 25, 15, 8, 75, 105, 62, 37, 20, 9, 187, 262, 155, 92, 50, 22, 11, 467, 655, 387, 230, 125, 55, 27, 13, 1167, 1637, 967, 575, 312, 137, 67, 32, 14, 2917, 4092, 2417, 1437, 780, 342, 167, 80, 35, 16, 7292, 10230, 6042
Offset: 1

Views

Author

Clark Kimberling, Jun 13 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
For further information about these 20 dispersions, see A191722.
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....2....5....12....30
3....7....17...42....105
4....10...25...62....155
6....15...37...92....230
8....20...50...125...312
9....22...55...137...342
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=2; b=5; m[n_]:=If[Mod[n,2]==0,1,0];
    f[n_]:=a*m[n+1]+b*m[n]+5*Floor[(n-1)/2]
    Table[f[n], {n, 1, 30}]  (* A047215 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191722 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191722  *)

A191724 Dispersion of A047218, (numbers >1 and congruent to 0 or 3 mod 5), by antidiagonals.

Original entry on oeis.org

1, 3, 2, 8, 5, 4, 20, 13, 10, 6, 50, 33, 25, 15, 7, 125, 83, 63, 38, 18, 9, 313, 208, 158, 95, 45, 23, 11, 783, 520, 395, 238, 113, 58, 28, 12, 1958, 1300, 988, 595, 283, 145, 70, 30, 14, 4895, 3250, 2470, 1488, 708, 363, 175, 75, 35, 16, 12238, 8125, 6175
Offset: 1

Views

Author

Clark Kimberling, Jun 13 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
For further information about these 20 dispersions, see A191722.
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....3....8....20....50
2....5....13...33....83
4....10...25...63....158
6....15...38...95....238
7....18...45...113...283
9....23...58...145...363
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=3; b=5; m[n_]:=If[Mod[n,2]==0,1,0];
    f[n_]:=a*m[n+1]+b*m[n]+5*Floor[(n-1)/2]
    Table[f[n], {n, 1, 30}]  (* A047218 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191724 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191724  *)

A191725 Dispersion of A047208, (numbers >1 and congruent to 0 or 4 mod 5), by antidiagonals.

Original entry on oeis.org

1, 4, 2, 10, 5, 3, 25, 14, 9, 6, 64, 35, 24, 15, 7, 160, 89, 60, 39, 19, 8, 400, 224, 150, 99, 49, 20, 11, 1000, 560, 375, 249, 124, 50, 29, 12, 2500, 1400, 939, 624, 310, 125, 74, 30, 13, 6250, 3500, 2349, 1560, 775, 314, 185, 75, 34, 16, 15625, 8750, 5874
Offset: 1

Views

Author

Clark Kimberling, Jun 13 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
For further information about these 20 dispersions, see A191722.
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....4....10....25....64
2....5....14....35...89
3....9....24...60...150
6....15...39...99...249
7....19...49...124..310
8....20...50...125...314
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=4; b=5; m[n_]:=If[Mod[n,2]==0,1,0];
    f[n_]:=a*m[n+1]+b*m[n]+5*Floor[(n-1)/2]
    Table[f[n], {n, 1, 30}]  (* A047208 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191725 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191725  *)

A191726 Dispersion of A047216, (numbers >1 and congruent to 1 or 2 mod 5), by antidiagonals.

Original entry on oeis.org

1, 2, 3, 6, 7, 4, 16, 17, 11, 5, 41, 42, 27, 12, 8, 102, 106, 67, 31, 21, 9, 256, 266, 167, 77, 52, 22, 10, 641, 666, 417, 192, 131, 56, 26, 13, 1602, 1666, 1042, 481, 327, 141, 66, 32, 14, 4006, 4166, 2606, 1202, 817, 352, 166, 81, 36, 15, 10016, 10416
Offset: 1

Views

Author

Clark Kimberling, Jun 13 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
For further information about these 20 dispersions, see A191722.
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....2....6....16....41
3....7....17...42....106
4....11...27...67....167
5....12...31...77....192
8....21...52...131...327
9....22...56...141...352
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=2; b=6; m[n_]:=If[Mod[n,2]==0,1,0];
    f[n_]:=a*m[n+1]+b*m[n]+5*Floor[(n-1)/2]
    Table[f[n], {n, 1, 30}]  (* A047216 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191726 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191726  *)

A191727 Dispersion of A047219, (numbers >1 and congruent to 1 or 3 mod 5), by antidiagonals.

Original entry on oeis.org

1, 3, 2, 8, 6, 4, 21, 16, 11, 5, 53, 41, 28, 13, 7, 133, 103, 71, 33, 18, 9, 333, 258, 178, 83, 46, 23, 10, 833, 646, 446, 208, 116, 58, 26, 12, 2083, 1616, 1116, 521, 291, 146, 66, 31, 14, 5208, 4041, 2791, 1303, 728, 366, 166, 78, 36, 15, 13021, 10103
Offset: 1

Views

Author

Clark Kimberling, Jun 13 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
For further information about these 20 dispersions, see A191722.
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....3....8....21....53
2....6....16...41....103
4....11...28...71....178
5....13...33...83....208
7....18...46...116...291
9....23...58...146...366
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=3; b=6; m[n_]:=If[Mod[n,2]==0,1,0];
    f[n_]:=a*m[n+1]+b*m[n]+5*Floor[(n-1)/2]
    Table[f[n], {n, 1, 30}]  (* A047219 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191727 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191727  *)

A191728 Dispersion of A047209, (numbers >1 and congruent to 1 or 4 mod 5), by antidiagonals.

Original entry on oeis.org

1, 4, 2, 11, 6, 3, 29, 16, 9, 5, 74, 41, 24, 14, 7, 186, 104, 61, 36, 19, 8, 466, 261, 154, 91, 49, 21, 10, 1166, 654, 386, 229, 124, 54, 26, 12, 2916, 1636, 966, 574, 311, 136, 66, 31, 13, 7291, 4091, 2416, 1436, 779, 341, 166, 79, 34, 15, 18229, 10229
Offset: 1

Views

Author

Clark Kimberling, Jun 13 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
For further information about these 20 dispersions, see A191722.
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....4....11...29....74
2....6....16...41....104
3....9....24...61....154
5....14...36...91....229
7....19...49...124...311
8....21...54...136...341
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=4; b=6; m[n_]:=If[Mod[n,2]==0,1,0];
    f[n_]:=a*m[n+1]+b*m[n]+5*Floor[(n-1)/2]
    Table[f[n], {n, 1, 30}]  (* A047209 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191728 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191728  *)
Showing 1-10 of 28 results. Next