cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A300711 a(n) = A000367(n)/A001067(n).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13, 7, 5, 1, 17, 1, 19, 1, 1, 11, 23, 1, 25, 13, 1, 7, 29, 1, 31, 1, 11, 17, 35, 1, 37, 19, 13, 1, 41, 1, 43, 11, 5, 23, 47, 1, 49, 1, 17, 13, 53, 1, 5, 7, 19, 29, 59, 1, 61, 31, 1, 1, 65, 11, 67, 17, 23, 7, 71, 1, 73, 37
Offset: 1

Views

Author

Bernd C. Kellner, Mar 11 2018

Keywords

Comments

a(n) is the trivial factor of the numerator of Bernoulli(2n) that divides 2n.
The remaining part of the (unsigned) numerator equals a product of powers of irregular primes, or 1 if and only if n = 1, 2, 3, 4, 5, 7.
Alternatively, a(n) is the product over all prime powers p^e, where p^e is the highest power of p dividing 2n and p-1 does not divide 2n.

Examples

			a(5) = 5, since Bernoulli(10) = 5/66 and Bernoulli(10)/10 = 1/132.
		

Crossrefs

A111008 equals the first entries and slightly differs, see a(35).

Programs

  • Julia
    using Nemo
    function A300711(n)
        b = bernoulli(n)
        div(numerator(b), numerator(b*QQ(1,n)))
    end
    [A300711(n) for n in 2:2:148] |> println # Peter Luschny, Mar 11 2018
    
  • Maple
    A300711 := proc(n) local P, F, f, divides; divides := (a,b) -> is(irem(b,a) = 0):
    P := 1; F := ifactors(2*n)[2]; for f in F do if not divides(f[1]-1, 2*n) then
    P := P*f[1]^f[2] fi od; P end: seq(A300711(n), n=1..74); # Peter Luschny, Mar 12 2018
  • Mathematica
    Table[Numerator[BernoulliB[n]]/Numerator[BernoulliB[n]/n], {n, 2, 100, 2}]
  • PARI
    a(n) = gcd(numerator(bernfrac(2*n)), 2*n) \\ Jianing Song, Apr 05 2021
    
  • PARI
    upto(N)=bernvec(N);forstep(n=2,2*N,2,print1(gcd(numerator(bernfrac(n)), n),", ")) \\ Jeppe Stig Nielsen, Jun 22 2023

Formula

a(n) = numerator(Bernoulli(2n))/numerator(Bernoulli(2n)/(2n)).
a(n) * A195989(n) = n. - Peter Luschny, Mar 12 2018
From Jianing Song, Apr 05 2021: (Start)
a(n) = gcd(numerator(Bernoulli(2n)), 2n).
a(n) = A002445(n)*(2n)/A075180(2n-1). (End)

A195989 Quotient of denominators of (BernoulliB(2n)/n) and BernoulliB(2n).

Original entry on oeis.org

1, 2, 3, 4, 1, 6, 1, 8, 9, 10, 1, 12, 1, 2, 3, 16, 1, 18, 1, 20, 21, 2, 1, 24, 1, 2, 27, 4, 1, 30, 1, 32, 3, 2, 1, 36, 1, 2, 3, 40, 1, 42, 1, 4, 9, 2, 1, 48, 1, 50, 3, 4, 1, 54, 11, 8, 3, 2, 1, 60, 1, 2, 63, 64, 1, 6, 1, 4, 3, 10, 1, 72, 1, 2, 3, 4, 1, 78, 1, 80, 81, 2, 1, 84
Offset: 1

Views

Author

Paul Curtz, Dec 21 2012

Keywords

Comments

The fixed points (entries equal to their index) are 1, 2, 3, 4, 6, 8, 9, 10, 12, 16, 18, 20, 21, 24, 27, 30, 32, 36, 40, 42,... See A193267.
Are the indices of the 1's, that is 1, 5, 7, 11, 13,... , the sequence A069040 (checked to be true for their first 700 entries)? This provides another link between the Bernoulli numbers.
a(10*k) = 10, 20, 30, 40, 50, 60, 10, 70, 80, 90, 100,... for k= 1, 2, 3,....

Examples

			a(1) = 6/6 =1, a(2) = 60/30 =2, a(3) =126/42 =3, a(4) = 120/30 =4, a(5) = 66/66 =1.
		

Programs

  • Magma
    [Denominator(Bernoulli(2*n)/n)/Denominator(Bernoulli(2*n)): n in [1..100]]; // Vincenzo Librandi, Mar 12 2018
  • Maple
    A195989 := proc(n)
        q1 := denom(bernoulli(2*n)/n) ;
        q2 := denom(bernoulli(2*n)) ;
        q1/q2 ;
    end proc: # R. J. Mathar, Jan 06 2013
    # Alternatively, without Bernoulli numbers:
    A195989 := proc(n) local P, F, f, divides; divides := (a,b) -> is(irem(b,a) = 0):
    P := 1; F := ifactors(2*n)[2]; for f in F do if not divides(f[1]-1, 2*n) then
    P := P*f[1]^f[2] fi od; n/P end: seq(A195989(n),n=1..84); # Peter Luschny, Mar 12 2018
  • Mathematica
    a[n_] := Denominator[ BernoulliB[2*n]/n] / Denominator[ BernoulliB[2*n]]; Table[a[n], {n, 1, 84}] (* Jean-François Alcover, Jan 04 2013 *)
  • PARI
    a(n) = my(b=bernfrac(2*n)); denominator(b/n)/denominator(b); \\ Michel Marcus, Mar 12 2018
    

Formula

a(n) = A193267(2*n)/2 = A036283(n) / A002445(n).
a(n) = n/A300711(n). - Peter Luschny, Mar 12 2018
2a(n) is the product over all prime powers p^e, where p^e is the highest power of p dividing 2n and p-1 divides 2n. - Peter Luschny, Mar 12 2018

A300330 a(n) is the product over all prime powers p^e where p^e is the highest power of p dividing n and p-1 does not divide n.

Original entry on oeis.org

1, 1, 3, 1, 5, 1, 7, 1, 9, 5, 11, 1, 13, 7, 15, 1, 17, 1, 19, 1, 21, 11, 23, 1, 25, 13, 27, 7, 29, 5, 31, 1, 33, 17, 35, 1, 37, 19, 39, 1, 41, 1, 43, 11, 45, 23, 47, 1, 49, 25, 51, 13, 53, 1, 55, 7, 57, 29, 59, 1, 61, 31, 63, 1, 65, 11, 67, 17, 69, 35, 71, 1
Offset: 1

Views

Author

Peter Luschny, Mar 12 2018

Keywords

Crossrefs

Programs

  • Julia
    using Nemo
    function A300330(n) P = 1
        for (p, e) in factor(ZZ(n))
            ! divisible(ZZ(n), p - 1) && (P *= p^e) end
    P end
    [A300330(n) for n in 1:72] |> println
    
  • Magma
    [n/(Denominator(Bernoulli(n)/n)/Denominator(Bernoulli(n))): n in [1..100]]; // Vincenzo Librandi, Mar 12 2018
  • Maple
    A300330 := proc(n) local P, F, f, divides; divides := (a,b) -> is(irem(b,a) = 0):
    P := 1; F := ifactors(n)[2]; for f in F do if not divides(f[1]-1, n) then
    P := P*f[1]^f[2] fi od; P end: seq(A300330(n), n=1..100);
  • Mathematica
    a[n_]:=If[OddQ[n], 1, Denominator[BernoulliB[n]/n]/Denominator[BernoulliB[n]]]; Table[n/a[n], {n, 1, 100}] (* Vincenzo Librandi, Mar 12 2018 *)

Formula

a(n) * A193267(n) = n.

A354139 a(n) is the least positive integer m such that (k+1)^n + (k+2)^n + ... + (k+m)^n == 0 (mod n) for every positive integer k.

Original entry on oeis.org

1, 4, 3, 8, 5, 36, 7, 16, 3, 20, 11, 72, 13, 28, 15, 32, 17, 108, 19, 200, 21, 44, 23, 144, 5, 52, 3, 56, 29, 180, 31, 64, 33, 68, 35, 216, 37, 76, 39, 400, 41, 1764, 43, 88, 15, 92, 47, 288, 7, 20, 51, 104, 53, 324, 55, 112, 57, 116, 59, 1800, 61, 124, 21, 128, 65, 396, 67, 136, 69, 140, 71
Offset: 1

Views

Author

Dimitrios T. Tambakos, May 18 2022

Keywords

Comments

a(n) divides n * A007947(n).

Examples

			a(2) = 4 because, for every positive integer k, (k+1)^2 + (k+2)^2 + (k+3)^2 + (k+4)^2 == 0 (mod 2), and no smaller positive integer satisfies this condition.
		

Programs

  • Mathematica
    sum[n_, r_] := Mod[Sum[k^r, {k, 1, n}], r];
    rad[r_] := Product[i[[1]], {i, FactorInteger[r]}];
    seq[r_] := Table[sum[n, r], {n, 1, r*rad[r]}];
    A354139[r_] := Piecewise[   {    {rad[r], OddQ[r]},
        {2*r, EvenQ[r] && PrimePowerQ[r]},
        {Length[FindRepeat[seq[r]]], EvenQ[r] && Not[PrimePowerQ[r]]}
        }
       ];
    Table[A354139[r], {r, 1, 20}] (* Improved by Dimitrios T. Tambakos, Feb 08 2023 *)
  • PARI
    isok(k, n) = my(p=sum(i=1, k, Mod(i+x, n)^n)); if (p==0, return(1)); for (i=1, n, if (subst(p, x, i) != 0, return(0))); return(1);
    a(n) = my(k=1); while (!isok(k,n), k++); k; \\ Michel Marcus, May 21 2022

Formula

a(2^t) = 2^(t+1) for integers t>0.
a(n) = A007947(n) for odd integers n.
Conjecture: a(n) = A007947(n) * A193267(n).
Showing 1-4 of 4 results.