cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A233440 Triangle read by rows: T(n, k) = n*binomial(n, k)*A000757(k), 0 <= k <= n.

Original entry on oeis.org

0, 1, 0, 2, 0, 0, 3, 0, 0, 3, 4, 0, 0, 16, 4, 5, 0, 0, 50, 25, 40, 6, 0, 0, 120, 90, 288, 216, 7, 0, 0, 245, 245, 1176, 1764, 1603, 8, 0, 0, 448, 560, 3584, 8064, 14656, 13000, 9, 0, 0, 756, 1134, 9072, 27216, 74196, 131625, 118872, 10, 0, 0, 1200, 2100, 20160, 75600, 274800, 731250, 1320800, 1202880
Offset: 0

Views

Author

Keywords

Comments

For n >= 0, 0 <= k <= n, T(n, k) is the number of permutations of n symbols that k-commute with an n-cycle (we say that two permutations f and g k-commute if H(fg, gf) = k, where H(, ) denotes the Hamming distance between permutations).
Row sums give A000142.

Examples

			For n = 4 and k = 4, T(4, 4) = 4 because all the permutations of 4 symbols that 4-commute with permutation (1, 2, 3, 4) are (1, 3), (2, 4), (1, 2)(3, 4) and (1, 4)(2, 3).
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := n Binomial[n, k] ((-1)^k+Sum[(-1)^j k!/(k-j)/j!, {j, 0, k-1}]);
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 03 2018 *)

Formula

T(n,k) = n*C(n,k)*A000757(k), 0 <= k <= n.
Bivariate e.g.f.: G(z, u) = z*exp(z*(1-u))*(u/(1-z*u)+(1-log(1-z*u))*(1-u)).
T(n, 0) = A001477(n), n>=0;
T(n, 1) = A000004(n), n>=1;
T(n, 2) = A000004(n), n>=2;
T(n, 3) = A004320(n-2), n>=3;
T(n, 4) = A027764(n-1), n>=4;
T(n, 5) = A027765(n-1)*A000757(5), n>=5;
T(n, 6) = A027766(n-1)*A000757(6), n>=6;
T(n, 7) = A027767(n-1)*A000757(7), n>=7;
T(n, 8) = A027768(n-1)*A000757(8), n>=8;
T(n, 9) = A027769(n-1)*A000757(9), n>=9;
T(n, 10) = A027770(n-1)*A000757(10), n>=10;
T(n, 11) = A027771(n-1)*A000757(11), n>=11;
T(n, 12) = A027772(n-1)*A000757(12), n>=12;
T(n, 13) = A027773(n-1)*A000757(13), n>=13;
T(n, 14) = A027774(n-1)*A000757(14), n>=14;
T(n, 15) = A027775(n-1)*A000757(15), n>=15;
T(n, 16) = A027776(n-1)*A000757(16), n>=16. - Luis Manuel Rivera Martínez, Feb 08 2014
T(n, 0)+T(n, 3) = n*A050407(n+1), for n>=0. - Luis Manuel Rivera Martínez, Mar 06 2014
Showing 1-1 of 1 results.