cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027778 a(n) = 5*(n+1)*binomial(n+2, 5)/2.

Original entry on oeis.org

10, 75, 315, 980, 2520, 5670, 11550, 21780, 38610, 65065, 105105, 163800, 247520, 364140, 523260, 736440, 1017450, 1382535, 1850695, 2443980, 3187800, 4111250, 5247450, 6633900, 8312850, 10331685, 12743325, 15606640, 18986880, 22956120, 27593720, 32986800, 39230730
Offset: 3

Views

Author

Thi Ngoc Dinh (via R. K. Guy)

Keywords

Comments

Number of 8-subsequences of [ 1, n ] with just 2 contiguous pairs.

Crossrefs

Not equal to 5*A005715(n+1)/2.

Programs

  • Mathematica
    DeleteCases[CoefficientList[Series[5 x^3*(2 + x)/(1 - x)^7, {x, 0, 24}], x], 0] (* Michael De Vlieger, Jul 16 2021 *)

Formula

G.f.: 5*x^3*(2+x)/(1-x)^7.
a(n) = binomial(n+1, 4)*binomial(n+2, 2). - Zerinvary Lajos, Apr 28 2005, corrected by R. J. Mathar, Feb 13 2016
From Amiram Eldar, Feb 01 2022: (Start)
Sum_{n>=3} 1/a(n) = 239/18 - 4*Pi^2/3.
Sum_{n>=3} (-1)^(n+1)/a(n) = 2*Pi^2/3 + 64*log(2)/3 - 383/18. (End)