A027829 Palindromic squares with an even number of digits.
698896, 637832238736, 4099923883299904, 6916103777337773016196, 40460195511188111559106404, 4872133543202112023453312784, 9658137819052882509187318569, 46501623417708833880771432610564, 1635977102407987117897042017795361, 163296619873968186681869378916692361
Offset: 1
Examples
836^2 = 698896, which is palindromic, so 698896 is in the sequence. 1001^2 = 1002001, which is palindromic, but it has an odd number of digits, so it's not in the sequence.
References
- Charles Ashbacher, More on palindromic squares, J. Rec. Math. 22, no. 2 (1990), 133-135. [A scan of the first page of this article is included with the last page of the Keith (1990) scan]
Links
- M. F. Hasler, Table of n, a(n) for n = 1..14
- K. S. Brown, On General Palindromic Numbers
- Patrick De Geest, Sporadic palindromic squares of even length
- Michael Keith, Classification and enumeration of palindromic squares, J. Rec. Math., 22 (No. 2, 1990), 124-132. [Annotated scanned copy]
Programs
-
Mathematica
Select[Range[1000000]^2, PalindromeQ[#] && OddQ[Floor[Log[10, #]]] &] (* Alonso del Arte, Oct 11 2019 *)
-
PARI
is_A027829(n)={issquare(n)&&Vecrev(n=digits(n))==n&&!bittest(#n, 0)} \\ This is faster than first checking for even length if applied to numbers known to have an even number of digits, as should be the case for a systematic search. For this, one should only consider squares, i.e., rather use is_A016113. - M. F. Hasler, Jun 08 2014
-
Python
from math import isqrt from itertools import count, islice def A027829_gen(): # generator of terms return filter(lambda n: (s:=str(n))[:(t:=(len(s)+1)//2)]==s[:-t-1:-1], map(lambda n: n**2, (d for l in count(2,2) for d in range(isqrt(10**(l-1))+1,isqrt(10**l)+1)))) A027829_list = list(islice(A027829_gen(),3)) # Chai Wah Wu, Jun 23 2022
-
Scala
def isPalindromic(n: BigInt): Boolean = n.toString == n.toString.reverse val squares = ((1: BigInt) to (1000000: BigInt)).map(n => n * n) squares.filter(n => isPalindromic(n) && n.toString.length % 2 == 0) // Alonso del Arte, Oct 07 2019
Formula
a(n) = A016113(n)^2. - M. F. Hasler, Jun 08 2014
Extensions
Two new terms were recently found by Bennett from UK (communication from Patrick De Geest, Dec 1999 or before)
Edited by M. F. Hasler, Jun 08 2014