A027903 a(n) = n*(n + 1)*(3*n + 1).
0, 8, 42, 120, 260, 480, 798, 1232, 1800, 2520, 3410, 4488, 5772, 7280, 9030, 11040, 13328, 15912, 18810, 22040, 25620, 29568, 33902, 38640, 43800, 49400, 55458, 61992, 69020, 76560, 84630, 93248, 102432, 112200, 122570, 133560, 145188, 157472, 170430
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Maple
A027903:=n->n*(n + 1)*(3*n + 1); seq(A027903(n), n=0..100); # Wesley Ivan Hurt, Dec 02 2013
-
Mathematica
Table[n (n + 1) (3*n + 1), {n, 0, 100}] (* Wesley Ivan Hurt, Dec 02 2013 *)
Formula
From Wesley Ivan Hurt, Dec 02 2013: (Start)
a(n) = n*(n + 1)*(3*n + 1).
a(n) = 3*n^3 + 4*n^2 + n.
From Amiram Eldar, Aug 15 2025: (Start)
Sum_{n>=1} 1/a(n) = 4 - sqrt(3)*Pi/4 - 9*log(3)/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/2 + 2*log(2) - 4. (End)
From Elmo R. Oliveira, Aug 29 2025: (Start)
G.f.: 2*x*(4 + 5*x)/(1 - x)^4.
E.g.f.: x*(8 + 13*x + 3*x^2)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)