cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027903 a(n) = n*(n + 1)*(3*n + 1).

Original entry on oeis.org

0, 8, 42, 120, 260, 480, 798, 1232, 1800, 2520, 3410, 4488, 5772, 7280, 9030, 11040, 13328, 15912, 18810, 22040, 25620, 29568, 33902, 38640, 43800, 49400, 55458, 61992, 69020, 76560, 84630, 93248, 102432, 112200, 122570, 133560, 145188, 157472, 170430
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Wesley Ivan Hurt, Dec 02 2013: (Start)
a(n) = n*(n + 1)*(3*n + 1).
a(n) = 3*n^3 + 4*n^2 + n.
a(n) = A002378(n) * A016777(n).
a(n) = A049451(n) * A001477(n+1).
a(n) = A001477(n) * A000567(n-1).
a(n) = A001477(n) * A001477(n+1) * A016777(n).
a(n) = A117642(n) + A016742(n) + A001477(n). (End)
From Amiram Eldar, Aug 15 2025: (Start)
Sum_{n>=1} 1/a(n) = 4 - sqrt(3)*Pi/4 - 9*log(3)/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/2 + 2*log(2) - 4. (End)
From Elmo R. Oliveira, Aug 29 2025: (Start)
G.f.: 2*x*(4 + 5*x)/(1 - x)^4.
E.g.f.: x*(8 + 13*x + 3*x^2)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)