cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027910 T(2n,n-2), T given by A027907.

Original entry on oeis.org

1, 6, 36, 210, 1221, 7098, 41328, 241128, 1409895, 8260934, 48497064, 285219090, 1680166215, 9912297150, 58558256496, 346371955776, 2051126447742, 12158963346852, 72147074769640, 428476010502582, 2546776668682323, 15149061841758174, 90175327717962024
Offset: 2

Views

Author

Keywords

Comments

a(n) is also the number of lattice paths from (0,0) to (2n-1,n-2) taking north and east steps avoiding north^{>=3}. - Shanzhen Gao, Apr 20 2010

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, n*(n-1)/2,
          (14*(2*n-1)*(65*n^3-120*n^2+37*n+6) *a(n-1)
          +36*(n-1)*(2*n-1)*(2*n-3)*(13*n+2) *a(n-2))/
          (3*(13*n-11)*(n-2)*(3*n+2)*(3*n+1)))
        end:
    seq(a(n), n=2..25);  # Alois P. Heinz, Aug 07 2013

Formula

a(n) = Sum_{i=0..floor((2*n-3)/2)} C(2*n,n-2-i)*C(n-2-i,i). Shanzhen Gao, Apr 20 2010
G.f.: -g^2*(g^2+g+1)/(3*g^2+g-1) where g = x times the g.f. of A143927. - Mark van Hoeij, Nov 16 2011
a(n) ~ sqrt((221-29*sqrt(13))/78) * ((70+26*sqrt(13))/27)^n/(9*sqrt(Pi*n)). - Vaclav Kotesovec, Aug 25 2014