cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027911 a(n) = T(2*n+1,n), with T given by A027907.

Original entry on oeis.org

1, 3, 15, 77, 414, 2277, 12727, 71955, 410346, 2355962, 13599915, 78855339, 458917850, 2679183405, 15683407785, 92022516525, 541050073146, 3186886397310, 18801598011274, 111083331666918, 657153430251396, 3892199032434105, 23077435617920925, 136963282273730613, 813597690808666386
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    seq(add(binomial(j,2*j-2-3*n)*binomial(2*n+1,j),j=0...2*n+1),n=0..20);  # Mark van Hoeij, May 12 2013
  • Mathematica
    Table[GegenbauerC[n, -2 n - 1, -1/2], {n, 0, 100}] (* Emanuele Munarini, Oct 20 2016 *)
  • Maxima
    makelist(ultraspherical(n,-2*n-1,-1/2),n,0,12); /* Emanuele Munarini, Oct 20 2016 */
    
  • PARI
    a(n)=sum(j=0, 2*n+1, binomial(j, 2*j-2-3*n)*binomial(2*n+1, j)); \\ Joerg Arndt, Oct 20 2016

Formula

a(n) = GegenbauerPoly(n,-2*n-1,-1/2). - Emanuele Munarini, Oct 20 2016
G.f.: g/(1-g-3*g^2), where g = x times the g.f. of A143927. - Mark van Hoeij, Nov 16 2011
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n+1,k)*binomial(2*n+1-k,n-2*k). - Emanuele Munarini, Oct 20 2016

Extensions

More terms from Joerg Arndt, Oct 20 2016