A027913 T(n,[ n/2 ]), T given by A027907.
1, 1, 2, 3, 10, 15, 50, 77, 266, 414, 1452, 2277, 8074, 12727, 45474, 71955, 258570, 410346, 1481108, 2355962, 8533660, 13599915, 49402850, 78855339, 287134346, 458917850, 1674425300, 2679183405, 9792273690, 15683407785
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..2550
Programs
-
Maple
seq(simplify(GegenbauerC(floor(n/2),-n,-1/2)), n=0..100); # Robert Israel, Oct 20 2016
-
Mathematica
Table[GegenbauerC[Floor[n/2], -n, -1/2] + KroneckerDelta[n, 0], {n, 0, 100}] (* Emanuele Munarini, Oct 20 2016 *)
-
Maxima
makelist(ultraspherical(floor(n/2),-n,-1/2),n,0,12); /* Emanuele Munarini, Oct 18 2016 */
Formula
a(n) = GegenbauerC(floor(n/2), -n, -1/2). - Emanuele Munarini, Oct 18 2016
G.f.: g(t) = (1+(t+t^2)*A(t^2)+t^4*A(t^2)^2)/(1-t^2*A(t^2)-3*t^4*A(t^2)^2), where A(t) is the g.f. of A143927 and satisfies A(t) = [1 + x*A(t) + t^2*A(t)^2]^2. - Emanuele Munarini, Oct 20 2016
Comments