cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027913 T(n,[ n/2 ]), T given by A027907.

Original entry on oeis.org

1, 1, 2, 3, 10, 15, 50, 77, 266, 414, 1452, 2277, 8074, 12727, 45474, 71955, 258570, 410346, 1481108, 2355962, 8533660, 13599915, 49402850, 78855339, 287134346, 458917850, 1674425300, 2679183405, 9792273690, 15683407785
Offset: 0

Views

Author

Keywords

Comments

The median coefficient in the expansion of (1 + x + x^2)^n. - Vladimir Reshetnikov, Nov 21 2020

Crossrefs

Programs

  • Maple
    seq(simplify(GegenbauerC(floor(n/2),-n,-1/2)), n=0..100); # Robert Israel, Oct 20 2016
  • Mathematica
    Table[GegenbauerC[Floor[n/2], -n, -1/2] + KroneckerDelta[n, 0], {n, 0,
    100}] (* Emanuele Munarini, Oct 20 2016 *)
  • Maxima
    makelist(ultraspherical(floor(n/2),-n,-1/2),n,0,12); /* Emanuele Munarini, Oct 18 2016 */

Formula

a(n) = GegenbauerC(floor(n/2), -n, -1/2). - Emanuele Munarini, Oct 18 2016
G.f.: g(t) = (1+(t+t^2)*A(t^2)+t^4*A(t^2)^2)/(1-t^2*A(t^2)-3*t^4*A(t^2)^2), where A(t) is the g.f. of A143927 and satisfies A(t) = [1 + x*A(t) + t^2*A(t)^2]^2. - Emanuele Munarini, Oct 20 2016