A027919 a(n) = least k such that 2nd elementary symmetric function of {1,2,...,k+1} >= 3rd elementary symmetric function of {1,2,...,n}.
2, 4, 6, 8, 11, 13, 16, 19, 22, 25, 29, 32, 36, 39, 43, 47, 51, 56, 60, 64, 69, 74, 78, 83, 88, 93, 98, 103, 109, 114, 119, 125, 131, 136, 142, 148, 154, 160, 166, 172, 178, 185, 191, 198, 204, 211, 217, 224, 231, 238, 245, 252, 259, 266
Offset: 3
Keywords
Programs
-
Maple
SymmPolyn := proc(L::list,n::integer) local c,a,sel; a :=0 ; sel := combinat[choose](nops(L),n) ; for c in sel do a := a+mul(L[e],e=c) ; end do: a; end proc: A027919 := proc(n) local k,i; [seq(i,i=1..n)] ; e3 := SymmPolyn(%,3) ; for k from 1 do [seq(i,i=1..k+1)] ; if SymmPolyn(%,2) >= e3 then return k; end if; end do: end proc: # R. J. Mathar, Sep 23 2016
Formula
Extensions
Definition modified by R. J. Mathar, Sep 23 2016