A027943 a(n) = T(2*n+1, n+3), T given by A027935.
1, 22, 155, 709, 2587, 8273, 24416, 68595, 187030, 500950, 1327986, 3499982, 9195035, 24115804, 63192397, 165512723, 433410661, 1134800215, 2971089810, 7778591025, 20364830496, 53316076892, 139583609940, 365435000524, 956721681957, 2504730383698, 6557469861231
Offset: 2
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 2..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-26,45,-45,26,-8,1).
Programs
-
GAP
List([2..40], n-> Fibonacci(2*n+7) - (78 +75*n +35*n^2 +12*n^3 +4*n^4)/6 ); # G. C. Greubel, Sep 28 2019
-
Magma
[Fibonacci(2*n+7) - (78 +75*n +35*n^2 +12*n^3 +4*n^4)/6: n in [2..40]]; // G. C. Greubel, Sep 28 2019
-
Maple
with(combinat); seq(fibonacci(2*n+7) - (78 +75*n +35*n^2 +12*n^3 +4*n^4)/6, n=2..40); # G. C. Greubel, Sep 28 2019
-
Mathematica
Table[Fibonacci[2*n+7] - (78 +75*n +35*n^2 +12*n^3 +4*n^4)/6, {n,2,40}]
-
PARI
vector(30, n, my(m=n+1); fibonacci(2*m+7) - (4*m^4 +12*m^3 +35*m^2 +75*m +78)/6) \\ G. C. Greubel, Sep 28 2019
-
Sage
[fibonacci(2*n+7) - (78 +75*n +35*n^2 +12*n^3 +4*n^4)/6 for n in (2..40)] # G. C. Greubel, Sep 28 2019
Formula
G.f.: x^2*(1+14*x+5*x^2-4*x^3) / ((1-x)^5*(1-3*x+x^2)). - Colin Barker, Feb 20 2016
From G. C. Greubel, Sep 28 2019: (Start)
a(n) = Sum_{j=0..n-2} binomial(2*n-j+1, 2*(n-j-2)).
a(n) = Fibonacci(2*n+7) - (78 +75*n +35*n^2 +12*n^3 +4*n^4)/6. (End)
Extensions
Terms a(22) onward added by G. C. Greubel, Sep 28 2019