cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027943 a(n) = T(2*n+1, n+3), T given by A027935.

Original entry on oeis.org

1, 22, 155, 709, 2587, 8273, 24416, 68595, 187030, 500950, 1327986, 3499982, 9195035, 24115804, 63192397, 165512723, 433410661, 1134800215, 2971089810, 7778591025, 20364830496, 53316076892, 139583609940, 365435000524, 956721681957, 2504730383698, 6557469861231
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([2..40], n-> Fibonacci(2*n+7) - (78 +75*n +35*n^2 +12*n^3 +4*n^4)/6 ); # G. C. Greubel, Sep 28 2019
  • Magma
    [Fibonacci(2*n+7) - (78 +75*n +35*n^2 +12*n^3 +4*n^4)/6: n in [2..40]]; // G. C. Greubel, Sep 28 2019
    
  • Maple
    with(combinat); seq(fibonacci(2*n+7) - (78 +75*n +35*n^2 +12*n^3 +4*n^4)/6, n=2..40); # G. C. Greubel, Sep 28 2019
  • Mathematica
    Table[Fibonacci[2*n+7] - (78 +75*n +35*n^2 +12*n^3 +4*n^4)/6, {n,2,40}]
  • PARI
    vector(30, n, my(m=n+1); fibonacci(2*m+7) - (4*m^4 +12*m^3 +35*m^2 +75*m +78)/6) \\ G. C. Greubel, Sep 28 2019
    
  • Sage
    [fibonacci(2*n+7) - (78 +75*n +35*n^2 +12*n^3 +4*n^4)/6 for n in (2..40)] # G. C. Greubel, Sep 28 2019
    

Formula

G.f.: x^2*(1+14*x+5*x^2-4*x^3) / ((1-x)^5*(1-3*x+x^2)). - Colin Barker, Feb 20 2016
From G. C. Greubel, Sep 28 2019: (Start)
a(n) = Sum_{j=0..n-2} binomial(2*n-j+1, 2*(n-j-2)).
a(n) = Fibonacci(2*n+7) - (78 +75*n +35*n^2 +12*n^3 +4*n^4)/6. (End)

Extensions

Terms a(22) onward added by G. C. Greubel, Sep 28 2019