cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027945 Greatest number in row n of array T given by A027935.

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 26, 51, 92, 176, 365, 709, 1300, 2587, 5270, 10220, 18955, 38403, 77533, 150438, 281403, 575333, 1155661, 2245004, 4227273, 8684673, 17390359, 33828704, 64250459, 131901368, 263589730, 513445147, 984880747, 2013363836, 4018052441, 7836832057, 15144704167, 30860244790, 61530661493
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A027935.

Programs

  • Mathematica
    A027935[n_, k_]:= A027935[n,k]= Sum[Binomial[n-j, 2*(n-k-j)], {j,0,Floor[(2*n-2*k+ 1)/2]}];
    b[n_]:= b[n]= Table[A027935[n,k], {k,0,n}]//Union;
    A027945[n_]:= Max[b[n]];
    Table[A027945[n], {n,0,50}] (* G. C. Greubel, Jun 06 2025 *)
  • SageMath
    @CachedFunction
    def A027935(n,k): return sum(binomial(n-j, 2*(n-k-j)) for j in range(int((2*n-2*k+1)/2+1)) )
    def b(n): return sorted(set(flatten([ A027935(n,k) for k in range(n+1)])))
    def A027945(n): return max(b(n))
    [A027945(n) for n in range(51)] # G. C. Greubel, Jun 06 2025