cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027946 a(n) is the sum of the non-Fibonacci numbers in row n of array T given by A027935, computed as T(n,m) + T(n,m+1) + ... + T(n,n-1), where m = floor((n+2)/2).

Original entry on oeis.org

0, 0, 0, 4, 7, 23, 42, 106, 200, 456, 879, 1903, 3718, 7814, 15396, 31780, 62951, 128487, 255378, 517522, 1030864, 2079440, 4147935, 8342239, 16655822, 33433038, 66791052, 133899916, 267603415, 536038871, 1071563514, 2145305338
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    Concatenation([0], List([1..40], n-> (2^(n+1)-2-Fibonacci(n+3) -(-1)^n*Fibonacci(n))/2)); # G. C. Greubel, Sep 28 2019
  • Magma
    [0] cat [(2^(n+1)-2-Fibonacci(n+3) -(-1)^n*Fibonacci(n))/2: n in [1..40]]; // G. C. Greubel, Sep 28 2019
    
  • Maple
    with(combinat); seq(`if`(n=0,0, (2^(n+1)-2-fibonacci(n+3) -(-1)^n* fibonacci(n))/2), n=0..40); # G. C. Greubel, Sep 28 2019
  • Mathematica
    Table[If[n==0,0,(2^(n+1) -2 -Fibonacci[n+3] -(-1)^n*Fibonacci[n])/2], {n, 0, 40}] (* G. C. Greubel, Sep 28 2019 *)
  • PARI
    concat([0], vector(40, n, (2^(n+1)-2-fibonacci(n+3) -(-1)^n* fibonacci(n))/2)) \\ G. C. Greubel, Sep 28 2019
    
  • Sage
    [0]+[(2^(n+1)-2-fibonacci(n+3) -(-1)^n*fibonacci(n))/2 for n in (1..40)] # G. C. Greubel, Sep 28 2019
    

Formula

G.f.: x^3*(4 - 5*x - 2*x^2 + 2*x^3)/((1-x)*(1-2*x)*(1+x-x^2)*(1-x-x^2)).
From G. C. Greubel, Sep 28 2019: (Start)
a(n) = (2^(n+1) - 2 - Fibonacci(n+3) - (-1)^n*Fibonacci(n))/2, n > 0.
a(2*n) = 4^n - 1 - Fibonacci(2*n+2), n > 0.
a(2*n+1) = 2^(2*n+1) - 1 - Fibonacci(2*n+2). (End)