cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027955 a(n) = T(2n+1, n+3), T given by A027948.

Original entry on oeis.org

1, 7, 92, 591, 2683, 9955, 32551, 98086, 280271, 773906, 2091266, 5576298, 14750858, 38839257, 101995694, 267462041, 700813797, 1835540197, 4806538617, 12585017712, 32949712457, 86265626164, 225849041524, 591283811748, 1548005222980, 4052735290427, 10610204784368
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    Concatenation([1], List([3..40], n-> Fibonacci(2*n+8) -(630 +607*n +295*n^2 +90*n^3 +20*n^4 +8*n^5)/30) ); # G. C. Greubel, Sep 30 2019
  • Magma
    [1] cat [Fibonacci(2*n+8) -(630 +607*n +295*n^2 +90*n^3 +20*n^4 +8*n^5)/30: n in [3..40]]; // G. C. Greubel, Sep 30 2019
    
  • Maple
    with(combinat); seq(`if`(n=2,1, fibonacci(2*n+8) -(630 +607*n +295*n^2 +90*n^3 +20*n^4 +8*n^5)/30), n=2..40); # G. C. Greubel, Sep 30 2019
  • Mathematica
    Table[If[n==2, 1, Fibonacci[2*n+8] - (630 +607*n +295*n^2 +90*n^3 +20*n^4 +8*n^5)/30], {n,2,40}] (* G. C. Greubel, Sep 30 2019 *)
  • PARI
    vector(40, n, my(m=n+1); if(m==2, 1, fibonacci(2*m+8) -(630 +607*m +295*m^2 +90*m^3 +20*m^4 +8*m^5)/30) ) \\ G. C. Greubel, Sep 30 2019
    
  • Sage
    [1]+[fibonacci(2*n+8) -(630 +607*n +295*n^2 +90*n^3 +20*n^4 +8*n^5)/30 for n in (3..40)] # G. C. Greubel, Sep 30 2019
    

Formula

G.f.: x^2*(1 -2*x +63*x^2 -70*x^3 +85*x^4 -71*x^5 +34*x^6 -9*x^7 +x^8)/( (1-x)^6*(1-3*x+x^2)). - Colin Barker, Nov 25 2014
From G. C. Greubel, Sep 30 2019: (Start)
a(n) = Sum_{j=0..n-2} binomial(2*n-j+1, j+6) for n >= 3.
a(n) = Fibonacci(2*n+8) - (630 +607*n +295*n^2 +90*n^3 +20*n^4 +8*n^5)/30 for n >= 3. (End)

Extensions

Name corrected and terms a(22) onward by G. C. Greubel, Sep 30 2019