A027955 a(n) = T(2n+1, n+3), T given by A027948.
1, 7, 92, 591, 2683, 9955, 32551, 98086, 280271, 773906, 2091266, 5576298, 14750858, 38839257, 101995694, 267462041, 700813797, 1835540197, 4806538617, 12585017712, 32949712457, 86265626164, 225849041524, 591283811748, 1548005222980, 4052735290427, 10610204784368
Offset: 2
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 2..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-34,71,-90,71,-34,9,-1).
Programs
-
GAP
Concatenation([1], List([3..40], n-> Fibonacci(2*n+8) -(630 +607*n +295*n^2 +90*n^3 +20*n^4 +8*n^5)/30) ); # G. C. Greubel, Sep 30 2019
-
Magma
[1] cat [Fibonacci(2*n+8) -(630 +607*n +295*n^2 +90*n^3 +20*n^4 +8*n^5)/30: n in [3..40]]; // G. C. Greubel, Sep 30 2019
-
Maple
with(combinat); seq(`if`(n=2,1, fibonacci(2*n+8) -(630 +607*n +295*n^2 +90*n^3 +20*n^4 +8*n^5)/30), n=2..40); # G. C. Greubel, Sep 30 2019
-
Mathematica
Table[If[n==2, 1, Fibonacci[2*n+8] - (630 +607*n +295*n^2 +90*n^3 +20*n^4 +8*n^5)/30], {n,2,40}] (* G. C. Greubel, Sep 30 2019 *)
-
PARI
vector(40, n, my(m=n+1); if(m==2, 1, fibonacci(2*m+8) -(630 +607*m +295*m^2 +90*m^3 +20*m^4 +8*m^5)/30) ) \\ G. C. Greubel, Sep 30 2019
-
Sage
[1]+[fibonacci(2*n+8) -(630 +607*n +295*n^2 +90*n^3 +20*n^4 +8*n^5)/30 for n in (3..40)] # G. C. Greubel, Sep 30 2019
Formula
G.f.: x^2*(1 -2*x +63*x^2 -70*x^3 +85*x^4 -71*x^5 +34*x^6 -9*x^7 +x^8)/( (1-x)^6*(1-3*x+x^2)). - Colin Barker, Nov 25 2014
From G. C. Greubel, Sep 30 2019: (Start)
a(n) = Sum_{j=0..n-2} binomial(2*n-j+1, j+6) for n >= 3.
a(n) = Fibonacci(2*n+8) - (630 +607*n +295*n^2 +90*n^3 +20*n^4 +8*n^5)/30 for n >= 3. (End)
Extensions
Name corrected and terms a(22) onward by G. C. Greubel, Sep 30 2019