cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027959 a(n) = Sum_{k=m..n} T(k,n-k), where m = floor((n+1)/2); a(n) is the n-th diagonal-sum of left justified array T given by A027948.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 12, 16, 27, 37, 59, 85, 129, 192, 285, 428, 634, 949, 1412, 2104, 3140, 4671, 6973, 10378, 15478, 23058, 34362, 51216, 76305, 113736, 169465, 252561, 376362, 560851, 835821, 1245503, 1856132, 2765976, 4121947
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A027948.

Programs

  • GAP
    a:=[1,1,2,3,5,7];; for n in [7..40] do a[n]:=3*a[n-2]+a[n-3] -3*a[n-4]-a[n-5]+a[n-6]; od; a; # G. C. Greubel, Sep 30 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x*(1+x-x^2-x^3+x^4)/((1-x^2)*(1-2*x^2-x^3+x^4)) )); // G. C. Greubel, Sep 30 2019
    
  • Maple
    seq(coeff(series(x*(1+x-x^2-x^3+x^4)/((1-x^2)*(1-2*x^2-x^3+x^4)), x, n+1), x, n), n = 1..40); # G. C. Greubel, Sep 30 2019
  • Mathematica
    T[n_, k_]:= If[k==n, 1, Sum[Binomial[k+j, 2*j-1], {j, 0, n-k}]]; Table[Sum[T[k, n-k], {k, Floor[(n-1)/2], n}], {n,0,40}] (* G. C. Greubel, Sep 30 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec(x*(1+x-x^2-x^3+x^4)/((1-x^2)*(1-2*x^2-x^3+x^4))) \\ G. C. Greubel, Sep 30 2019
    
  • Sage
    def A027959_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+x-x^2-x^3+x^4)/((1-x^2)*(1-2*x^2-x^3+x^4)) ).list()
    a=A027959_list(40); a[1:] # G. C. Greubel, Sep 30 2019
    

Formula

G.f.: x*(1+x-x^2-x^3+x^4)/((1-x)*(1+x)*(1-2*x^2-x^3+x^4)). - Colin Barker, Nov 25 2014