A027963 T(n,n+3), T given by A027960.
1, 6, 19, 47, 101, 199, 370, 661, 1148, 1954, 3278, 5442, 8967, 14696, 23993, 39065, 63483, 103025, 167040, 270655, 438346, 709716, 1148844, 1859412, 3009181, 4869594, 7879855, 12750611, 20631713, 33383659, 54016798, 87401977, 141420392, 228824086, 370246298, 599072310, 969320643
Offset: 3
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).
Crossrefs
Cf. A000032.
Programs
-
GAP
List([3..40], n-> Lucas(1,-1,n+4)[2] - (3*n^2+5*n+14)/2 ) # G. C. Greubel, Jun 01 2019
-
Magma
[Lucas(n+4) -(3*n^2+5*n+14)/2: n in [3..40]]; // G. C. Greubel, Jun 01 2019
-
Mathematica
t[, 0] = 1; t[, 1] = 3; t[n_, k_] /; (k == 2*n) = 1; t[n_, k_] := t[n, k] = t[n-1, k-2] + t[n-1, k-1]; Table[t[n, n+3], {n, 3, 33}] (* Jean-François Alcover, Dec 27 2013 *) Table[LucasL[n+4] -(3*n^2+5*n+14)/2, {n,3,40}] (* G. C. Greubel, Jun 01 2019 *)
-
PARI
{a(n) = fibonacci(n+5) + fibonacci(n+3) - (3*n^2+5*n+14)/2}; \\ G. C. Greubel, Jun 01 2019
-
Sage
[lucas_number2(n+4,1,-1) - (3*n^2+5*n+14)/2 for n in (3..40)] # G. C. Greubel, Jun 01 2019
Formula
G.f.: x^3*(1+2*x)/((1-x)^3*(1-x-x^2)). Differences of A027964. - Ralf Stephan, Feb 07 2004
a(n) = Lucas(n+4) - (3*n^2 + 5*n + 14)/2.
Extensions
Terms a(34) onward added by G. C. Greubel, Jun 01 2019