cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027963 T(n,n+3), T given by A027960.

Original entry on oeis.org

1, 6, 19, 47, 101, 199, 370, 661, 1148, 1954, 3278, 5442, 8967, 14696, 23993, 39065, 63483, 103025, 167040, 270655, 438346, 709716, 1148844, 1859412, 3009181, 4869594, 7879855, 12750611, 20631713, 33383659, 54016798, 87401977, 141420392, 228824086, 370246298, 599072310, 969320643
Offset: 3

Views

Author

Keywords

Crossrefs

Cf. A000032.

Programs

  • GAP
    List([3..40], n-> Lucas(1,-1,n+4)[2] - (3*n^2+5*n+14)/2 ) # G. C. Greubel, Jun 01 2019
  • Magma
    [Lucas(n+4) -(3*n^2+5*n+14)/2: n in [3..40]]; // G. C. Greubel, Jun 01 2019
    
  • Mathematica
    t[, 0] = 1; t[, 1] = 3; t[n_, k_] /; (k == 2*n) = 1; t[n_, k_] := t[n, k] = t[n-1, k-2] + t[n-1, k-1]; Table[t[n, n+3], {n, 3, 33}]  (* Jean-François Alcover, Dec 27 2013 *)
    Table[LucasL[n+4] -(3*n^2+5*n+14)/2, {n,3,40}] (* G. C. Greubel, Jun 01 2019 *)
  • PARI
    {a(n) = fibonacci(n+5) + fibonacci(n+3) - (3*n^2+5*n+14)/2}; \\ G. C. Greubel, Jun 01 2019
    
  • Sage
    [lucas_number2(n+4,1,-1) - (3*n^2+5*n+14)/2 for n in (3..40)] # G. C. Greubel, Jun 01 2019
    

Formula

G.f.: x^3*(1+2*x)/((1-x)^3*(1-x-x^2)). Differences of A027964. - Ralf Stephan, Feb 07 2004
a(n) = Lucas(n+4) - (3*n^2 + 5*n + 14)/2.

Extensions

Terms a(34) onward added by G. C. Greubel, Jun 01 2019