A027967 T(n, 2*n-5), T given by A027960.
3, 7, 18, 44, 98, 199, 373, 654, 1085, 1719, 2620, 3864, 5540, 7751, 10615, 14266, 18855, 24551, 31542, 40036, 50262, 62471, 76937, 93958, 113857, 136983, 163712, 194448, 229624, 269703, 315179, 366578, 424459, 489415, 562074, 643100, 733194, 833095, 943581, 1065470, 1199621
Offset: 3
Links
- G. C. Greubel, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
A column of triangle A027011.
Programs
-
GAP
List([3..50], n-> (840-736*n+300*n^2-45*n^3+n^5)/120) G. C. Greubel, Jun 30 2019
-
Magma
[(840-736*n+300*n^2-45*n^3+n^5)/120: n in [3..50]]; // G. C. Greubel, Jun 30 2019
-
Mathematica
LinearRecurrence[{6,-15,20,-15,6,-1}, {3,7,18,44,98,199}, 50] (* G. C. Greubel, Jun 30 2019 *)
-
PARI
for(n=3,50, print1((840-736*n+300*n^2-45*n^3+n^5)/120, ", ")) \\ G. C. Greubel, Jun 30 2019
-
Sage
[(840-736*n+300*n^2-45*n^3+n^5)/120 for n in (3..50)] # G. C. Greubel, Jun 30 2019
Formula
From Ralf Stephan, Feb 07 2004: (Start)
G.f.: x^3*(3-2*x)*(1-3*x+5*x^2-3*x^3+x^4)/(1-x)^6.
Differences of A027968. (End)
From G. C. Greubel, Jun 30 2019: (Start)
a(n) = (840 - 736*n + 300*n^2 - 45*n^3 + n^5)/120.
E.g.f.: (-120*(7 + 3*x + x^2) + (840 - 480*x + 180*x^2 - 20*x^3 + 10*x^4 + x^5)*exp(x))/120. (End)
Extensions
Terms a(37) onward added by G. C. Greubel, Jun 30 2019