A027969 a(n) = T(n, 2*n-7), T given by A027960.
3, 7, 18, 47, 120, 291, 661, 1404, 2801, 5283, 9484, 16305, 26990, 43215, 67191, 101782, 150639, 218351, 310614, 434419, 598260, 812363, 1088937, 1442448, 1889917, 2451243, 3149552, 4011573, 5068042, 6354135, 7909931, 9780906, 12018459, 14680471, 17831898, 21545399, 25902000, 30991795
Offset: 4
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 4..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Crossrefs
A column of triangle A027011.
Programs
-
GAP
List([4..50], n-> (90720 -85548*n +38822*n^2 -10136*n^3 +1505*n^4 -77*n^5 -7*n^6 + n^7)/5040) # G. C. Greubel, Jul 01 2019
-
Magma
[(90720 -85548*n +38822*n^2 -10136*n^3 +1505*n^4 -77*n^5 -7*n^6 + n^7)/5040: n in [4..50]]; // G. C. Greubel, Jul 01 2019
-
Mathematica
Table[(90720 -85548*n +38822*n^2 -10136*n^3 +1505*n^4 -77*n^5 -7*n^6 + n^7)/5040, {n,4,50}] (* G. C. Greubel, Jul 01 2019 *)
-
PARI
for(n=4,50, print1((90720 -85548*n +38822*n^2 -10136*n^3 +1505*n^4 -77*n^5 -7*n^6 + n^7)/5040, ", ")) \\ G. C. Greubel, Jul 01 2019
-
Sage
[(90720 -85548*n +38822*n^2 -10136*n^3 +1505*n^4 -77*n^5 -7*n^6 + n^7)/5040 for n in (4..50)] # G. C. Greubel, Jul 01 2019
Formula
From Ralf Stephan, Feb 07 2004: (Start)
G.f.: x^4*(3-2x)*(1-x+x^2)*(1-4x+7x^2-4x^3+x^4)/(1-x)^8.
First differences of A027970. (End)
From G. C. Greubel, Jul 01 2019: (Start)
a(n) = (90720 -85548*n +38822*n^2 -10136*n^3 +1505*n^4 -77*n^5 -7*n^6 + n^7)/5040.
E.g.f.: (-90720 - 35280*x - 7560*x^2 - 1680*x^3 + (90720 - 55440*x + 17640*x^2 - 3360*x^3 + 630*x^4 - 42*x^5 + 14*x^6 + x^7)*exp(x))/5040. (End)
Extensions
Terms a(35) onward added by G. C. Greubel, Jul 01 2019