A027970 a(n) = T(n, 2*n-8), T given by A027960.
1, 4, 11, 29, 76, 196, 487, 1148, 2552, 5353, 10636, 20120, 36425, 63415, 106630, 173821, 275603, 426242, 644593, 955207, 1389626, 1987886, 2800249, 3889186, 5331634, 7221551, 9672794, 12822346, 16833919, 21901961, 28256096
Offset: 4
Links
- Colin Barker, Table of n, a(n) for n = 4..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Crossrefs
A column of triangle A026998.
Programs
-
GAP
List([4..40], n-> (-1169280 +1119312*n -517700*n^2 +148092*n^3 -26551*n^4 +2688*n^5 -70*n^6 -12*n^7 +n^8)/40320); # G. C. Greubel, Jul 01 2019
-
Magma
[(-1169280 +1119312*n -517700*n^2 +148092*n^3 -26551*n^4 +2688*n^5 -70*n^6 -12*n^7 +n^8)/40320: n in [4..40]]; // G. C. Greubel, Jul 01 2019
-
Mathematica
Table[(-1169280 +1119312*n -517700*n^2 +148092*n^3 -26551*n^4 +2688*n^5 -70*n^6 -12*n^7 +n^8)/40320, {n, 4, 40}] (* G. C. Greubel, Jul 01 2019 *)
-
PARI
Vec(x^4*(x^8-5*x^7+11*x^6-10*x^5-x^4+10*x^3-11*x^2+5*x-1)/(x-1)^9 + O(x^40)) \\ Colin Barker, Nov 25 2014
-
PARI
for(n=4,40, print1((-1169280 +1119312*n -517700*n^2 +148092*n^3 -26551*n^4 +2688*n^5 -70*n^6 -12*n^7 +n^8)/40320, ", ")) \\ G. C. Greubel, Jul 01 2019
-
Sage
[(-1169280 +1119312*n -517700*n^2 +148092*n^3 -26551*n^4 +2688*n^5 -70*n^6 -12*n^7 +n^8)/40320 for n in (4..40)] # G. C. Greubel, Jul 01 2019
Formula
Sequence satisfies an 8-degree polynomial approximating A002878.
a(n) = (-1169280 +1119312*n -517700*n^2 +148092*n^3 -26551*n^4 +2688*n^5 -70*n^6 -12*n^7 +n^8)/40320. - Colin Barker, Nov 25 2014
G.f.: x^4*(x^8-5*x^7+11*x^6-10*x^5-x^4+10*x^3-11*x^2+5*x-1) / (x-1)^9. - Colin Barker, Nov 25 2014
From G. C. Greubel, Jul 01 2019: (Start)
E.g.f.: (1169280 + 443520*x + 80640*x^2 + 6720*x^3 +(-1169280 +725760*x -221760*x^2 +47040*x^3 -6720*x^4 +1008*x^5 -56*x^6 +16*x^7 +x^8)*exp(x) )/8!. (End)