cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027970 a(n) = T(n, 2*n-8), T given by A027960.

Original entry on oeis.org

1, 4, 11, 29, 76, 196, 487, 1148, 2552, 5353, 10636, 20120, 36425, 63415, 106630, 173821, 275603, 426242, 644593, 955207, 1389626, 1987886, 2800249, 3889186, 5331634, 7221551, 9672794, 12822346, 16833919, 21901961, 28256096
Offset: 4

Views

Author

Keywords

Crossrefs

A column of triangle A026998.

Programs

  • GAP
    List([4..40], n-> (-1169280 +1119312*n -517700*n^2 +148092*n^3 -26551*n^4 +2688*n^5 -70*n^6 -12*n^7 +n^8)/40320); # G. C. Greubel, Jul 01 2019
  • Magma
    [(-1169280 +1119312*n -517700*n^2 +148092*n^3 -26551*n^4 +2688*n^5 -70*n^6 -12*n^7 +n^8)/40320: n in [4..40]]; // G. C. Greubel, Jul 01 2019
    
  • Mathematica
    Table[(-1169280 +1119312*n -517700*n^2 +148092*n^3 -26551*n^4 +2688*n^5 -70*n^6 -12*n^7 +n^8)/40320, {n, 4, 40}] (* G. C. Greubel, Jul 01 2019 *)
  • PARI
    Vec(x^4*(x^8-5*x^7+11*x^6-10*x^5-x^4+10*x^3-11*x^2+5*x-1)/(x-1)^9 + O(x^40)) \\ Colin Barker, Nov 25 2014
    
  • PARI
    for(n=4,40, print1((-1169280 +1119312*n -517700*n^2 +148092*n^3 -26551*n^4 +2688*n^5 -70*n^6 -12*n^7 +n^8)/40320, ", ")) \\ G. C. Greubel, Jul 01 2019
    
  • Sage
    [(-1169280 +1119312*n -517700*n^2 +148092*n^3 -26551*n^4 +2688*n^5 -70*n^6 -12*n^7 +n^8)/40320 for n in (4..40)] # G. C. Greubel, Jul 01 2019
    

Formula

Sequence satisfies an 8-degree polynomial approximating A002878.
a(n) = (-1169280 +1119312*n -517700*n^2 +148092*n^3 -26551*n^4 +2688*n^5 -70*n^6 -12*n^7 +n^8)/40320. - Colin Barker, Nov 25 2014
G.f.: x^4*(x^8-5*x^7+11*x^6-10*x^5-x^4+10*x^3-11*x^2+5*x-1) / (x-1)^9. - Colin Barker, Nov 25 2014
From G. C. Greubel, Jul 01 2019: (Start)
a(n) = A027971(n+1) - A027971(n).
E.g.f.: (1169280 + 443520*x + 80640*x^2 + 6720*x^3 +(-1169280 +725760*x -221760*x^2 +47040*x^3 -6720*x^4 +1008*x^5 -56*x^6 +16*x^7 +x^8)*exp(x) )/8!. (End)