cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027976 n-th diagonal sum of right justified array T given by A027960.

Original entry on oeis.org

1, 1, 4, 6, 10, 18, 29, 47, 78, 126, 204, 332, 537, 869, 1408, 2278, 3686, 5966, 9653, 15619, 25274, 40894, 66168, 107064, 173233, 280297, 453532, 733830, 1187362, 1921194, 3108557, 5029751, 8138310, 13168062, 21306372, 34474436, 55780809, 90255245, 146036056, 236291302, 382327358
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    a:=[1,1,4,6,10];; for n in [6..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]-a[n-4]-a[n-5]; od; a; # G. C. Greubel, Sep 26 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1 + 2*x^2)/((1-x^3)*(1-x-x^2)) )); // G. C. Greubel, Sep 26 2019
    
  • Maple
    seq(coeff(series((1 + 2*x^2)/((1-x^3)*(1-x-x^2)), x, n+1), x, n), n = 0..40); # G. C. Greubel, Sep 26 2019
  • Mathematica
    LinearRecurrence[{1,1,1,-1,-1}, {1,1,4,6,10}, 41] (* or *) Table[ (Fibonacci[n+1] +LucasL[n+2] -2*Sin[2*Pi*n/3]/Sqrt[3] -2)/2, {n,0,40}] (* G. C. Greubel, Sep 26 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((1 + 2*x^2)/((1-x^3)*(1-x-x^2))) \\ G. C. Greubel, Sep 26 2019
    
  • Sage
    def A027976_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1 + 2*x^2)/((1-x^3)*(1-x-x^2))).list()
    A027976_list(40) # G. C. Greubel, Sep 26 2019
    

Formula

G.f.: (1 + 2*x^2)/((1-x^3)*(1-x-x^2)).
From G. C. Greubel, Sep 26 2019: (Start)
a(n) = (Fibonacci(n) + 4*Fibonacci(n+1) - A102283(n) - 2)/2.
a(n) = (Fibonacci(n+1) + Lucas(n+2) - 2*sin(2*Pi*n/3)/sqrt(3) - 2)/2. (End)

Extensions

Terms a(28) onward added by G. C. Greubel, Sep 26 2019