cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027978 a(n) = self-convolution of row n of array T given by A027960.

Original entry on oeis.org

1, 11, 42, 145, 473, 1484, 4529, 13543, 39870, 115937, 333781, 953056, 2702497, 7618115, 21365778, 59657329, 165926609, 459905588, 1270819025, 3501855007, 9625627686, 26398369601, 72248624077, 197361589960, 538199264833
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([0..40], n-> 2*(n+1)*Lucas(1,-1,2*n)[2] + Fibonacci(2*n-4) ); # G. C. Greubel, Oct 01 2019
  • Magma
    [2*(n+1)*Lucas(2*n) + Fibonacci(2*n-4): n in [0..40]]; // G. C. Greubel, Oct 01 2019
    
  • Maple
    with(combinat); f:=fibonacci; seq(2*(n+1)*(f(2*n+1) + f(2*n-1)) + f(2*n-4), n=0..40); # G. C. Greubel, Oct 01 2019
  • Mathematica
    Table[2*(n+1)*LucasL[2*n] + Fibonacci[2*n-4], {n, 0, 40}] (* G. C. Greubel, Oct 01 2019 *)
  • PARI
    vector(41, n, f=fibonacci; 2*n*(f(2*n-1) + f(2*n-3)) + f(2*n-6)) \\ G. C. Greubel, Oct 01 2019
    
  • Sage
    [2*(n+1)*lucas_number2(2*n,1,-1) + fibonacci(2*n-4) for n in (0..40)] # G. C. Greubel, Oct 01 2019
    

Formula

From Colin Barker, Feb 25 2015: (Start)
a(n) = 5*a(n-1) - 5*a(n-2) - 5*a(n-3) + 5*a(n-4) - a(n-5).
G.f.: (1 +5*x -13*x^2 +8*x^3)/(1-3*x+x^2)^2. (End)
a(n) = 2*(n+1)*Lucas(2*n) + Fibonacci(2*n-4). - G. C. Greubel, Oct 01 2019