A027980 a(n) = Sum_{k=0..n-1} T(n,k)*T(n,2n-k), T given by A027960.
1, 13, 48, 176, 580, 1844, 5667, 17047, 50404, 147090, 424686, 1215528, 3453733, 9752641, 27393240, 76587284, 213260152, 591707612, 1636514439, 4513276555, 12414985996, 34071252918, 93305816418, 255027755856, 695815086025, 1895348847349, 5154987856512, 14000952578552
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-5,-5,5,-1).
Programs
-
GAP
List([0..40], n-> (n+1)*Lucas(1,-1,2*n+2)[2] - Fibonacci(2*n+1) -(-1)^n); # G. C. Greubel, Oct 01 2019
-
Magma
[(n+1)*Lucas(2*n+2) - Fibonacci(2*n+1) -(-1)^n: n in [0..40]]; // G. C. Greubel, Oct 01 2019
-
Maple
with(combinat); f:=fibonacci; seq((n+1)*(f(2*n+3) + f(2*n+1)) - f(2*n+1) -(-1)^n, n=0..40); # G. C. Greubel, Oct 01 2019
-
Mathematica
Table[(n+1)*LucasL[2*n+2] -Fibonacci[2*n+1] -(-1)^n, {n,0,40}] (* G. C. Greubel, Oct 01 2019 *)
-
PARI
vector(41, n, f=fibonacci; n*(f(2*n+1) + f(2*n-1)) - f(2*n-1) + (-1)^n) \\ G. C. Greubel, Oct 01 2019
-
Sage
[(n+1)*lucas_number2(2*n+2,1,-1) - fibonacci(2*n+1) -(-1)^n for n in (0..40)] # G. C. Greubel, Oct 01 2019
Formula
G.f.: (1 +8*x -12*x^2 +6*x^3)/ ((1+x)*(1-3*x+x^2)^2). - Colin Barker, Nov 25 2014
a(n) = (n+1)*Lucas(2*n) - Fibonacci(2*n+1) - (-1)^n. - G. C. Greubel, Oct 01 2019
Extensions
Terms a(24) onward added by G. C. Greubel, Oct 01 2019