cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027985 a(n) = Sum_{k=0..2*n-1} T(n, k)*T(n, k+1), T given by A027960.

Original entry on oeis.org

6, 35, 144, 564, 2186, 8468, 32856, 127729, 497454, 1940525, 7580656, 29651385, 116111194, 455138499, 1785707924, 7011933544, 27554583254, 108355491404, 426368213364, 1678704356644, 6613026412314, 26064305550054, 102777232982624
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    f:= func< n,k | (&+[Binomial(2*n-k+j,j)*Lucas(2*(k-n-j)): j in [0..k-n-1]]) >;
    A027960:= func< n,k | k le n select Lucas(k+1) else Lucas(k+1) - f(n,k) >;
    A027985:= func< n | (&+[A027960(n,k)*A027960(n,k+1): k in [0..2*n-1]]) >;
    [A027985(n): n in [1..40]]; // G. C. Greubel, Jun 13 2025
    
  • Mathematica
    f[n_, k_]:= f[n,k]= Sum[Binomial[2*n-k+j,j]*LucasL[2*(k-n-j)], {j,0,k-n-1}];
    A027960[n_, k_]:= LucasL[k+1] - f[n,k]*Boole[k>n];
    A027985[n_]:= A027985[n]= Sum[A027960[n,k]*A027960[n,k+1], {k,0,2*n-1}];
    Table[A027985[n], {n,40}] (* G. C. Greubel, Jun 13 2025 *)
  • SageMath
    def L(n): return lucas_number2(n,1,-1)
    def f(n,k): return sum(binomial(2*n-k+j,j)*L(2*(k-n-j)) for j in range(k-n))
    def A027960(n,k): return L(k+1) - f(n,k)*int(k>n)
    def A027985(n): return sum(A027960(n,k)*A027960(n,k+1) for k in range(2*n))
    print([A027985(n) for n in range(1,41)]) # G. C. Greubel, Jun 13 2025

Formula

a(n) = A360278(n) - 1 + Sum_{k=n..2*n-1} A027960(n,k)*A027960(n,k+1), for n >= 1. - G. C. Greubel, Jun 13 2025