cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027989 a(n) = self-convolution of row n of array T given by A027926.

Original entry on oeis.org

1, 3, 10, 33, 105, 324, 977, 2895, 8462, 24465, 70101, 199368, 563425, 1583643, 4430290, 12342849, 34262337, 94800780, 261545777, 719697255, 1975722326, 5412138033, 14796520365, 40380240528, 110016825025, 299285288499, 813011578522, 2205652007265, 5976479585817
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of all columns in stack polyominoes of perimeter 2n+4. - Emanuele Munarini, Apr 07 2011

Crossrefs

Programs

  • Mathematica
    Table[((5+4n)Fibonacci[1+2n]-(1+2n)Fibonacci[2n])/5,{n,0,28}] (* Emanuele Munarini, Apr 07 2011 *)
  • Maxima
    makelist(((5+4*n)*fib(1+2*n)-(1+2*n)*fib(2*n))/5,n,0,20); /* Emanuele Munarini, Apr 07 2011 */
    
  • PARI
    Vec((1-3*x+3*x^2)/(1-3*x+x^2)^2+O(x^66)) /* Joerg Arndt, Apr 08 2011 */

Formula

a(n) = (2/5)*(n + 1)*F(2*n+3) + (1/5)*F(2*n+2) - (4/5)*(n + 1)*F(2*n), where F(n) = A000045(n). - Ralf Stephan, May 13 2004
From Emanuele Munarini, Apr 07 2011: (Start)
a(n) = ((4*n + 5)*F(2*n+1) - (2*n + 1)*F(2*n))/5, where F(n) = A000045(n).
a(n) = Sum_{k=0..n} binomial(2*n-k, k)*(k + 1).
G.f.: (1 - 3*x + 3*x^2)/(1 - 3*x + x^2)^2.
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4). (End)