cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028295 a(n) = n^6 - (883/60)*n^5 + (157/3)*n^4 + (2155/12)*n^3 - (4570/3)*n^2 + (42767/15)*n - 967.

Original entry on oeis.org

133, 1903, 10561, 38015, 106461, 252737, 533397, 1030505, 1858149, 3169675, 5165641, 8102491, 12301949, 18161133, 26163389, 36889845, 51031685, 69403143, 92955217, 122790103, 160176349, 206564729, 263604837, 333162401, 417337317, 518482403, 639222873
Offset: 6

Views

Author

Keywords

Comments

Old name was: "Number of stacks of n pikelets, distance 6 flips from a well-ordered stack".

Crossrefs

Programs

  • Magma
    [(60*n^6 -883*n^5 +3140*n^4 +10775*n^3 -91400*n^2 +171068*n -58020)/60: n in [6..46]]; // G. C. Greubel, Jan 03 2024
    
  • Mathematica
    (* Codes from Robert G. Wilson v, Jul 29 2018: Start *)
    a[n_]:= n^6 - (883/60)*n^5 + (157/3)*n^4 + (2155/12)*n^3 - (4570/3)*n^2 + (42767/15)*n - 967; Table[a[n], {n,6,36}]
    CoefficientList[ Series[x^6 (3x^6 -2x^5 -187x^4 +604x^3 -33x^2 -972x - 133)/(x-1)^7, {x,0,36}], x]
    LinearRecurrence[{7,-21,35,-35,21,-7,1}, {133,1903,10561,38015,106461, 252737,533397}, 36]
    (* End *)
  • SageMath
    [(60*n^6 -883*n^5 +3140*n^4 +10775*n^3 -91400*n^2 +171068*n -58020)/60 for n in range(6,47)] # G. C. Greubel, Jan 03 2024

Formula

G.f.: x^6*(133 + 972*x + 33*x^2 - 604*x^3 + 187*x^4 + 2*x^5 - 3*x^6) / (1-x)^7. - R. J. Mathar, Jun 21 2011
E.g.f.: (1/5!)*(116040 - 69480*x - 30540*x^2 - 2340*x^3 + 95*x^4 + 3*x^5 - (116040 - 185520*x + 96960*x^2 - 25880*x^3 + 3580*x^4 - 34*x^5 - 120*x^6)*exp(x)). - G. C. Greubel, Jan 03 2024

Extensions

Entry revised by N. J. A. Sloane, Jun 15 2014
a(17)-a(32) from Robert G. Wilson v, Jul 29 2018