A028304 a(n) = ceiling( binomial(n, floor(n/2))/(1 + ceiling(n/2)) ) (interpolates between Catalan numbers).
1, 1, 1, 1, 2, 3, 5, 7, 14, 21, 42, 66, 132, 215, 429, 715, 1430, 2431, 4862, 8398, 16796, 29393, 58786, 104006, 208012, 371450, 742900, 1337220, 2674440, 4847423, 9694845, 17678835, 35357670, 64822395, 129644790, 238819350, 477638700, 883631595, 1767263190, 3282060210
Offset: 0
Keywords
References
- D. Miklos et al., eds., Combinatorics, Paul Erdős is Eighty, Bolyai Math. Soc., 1993, Vol. 1, p. 101.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
[Ceiling(Binomial(n,Floor(n/2))/Floor((n+3)/2)): n in [0..50]]; // G. C. Greubel, Jan 05 2024
-
Maple
A028304 := proc(n) A001405(n)/(ceil(n/2)+1) ; ceil(%) ; end proc: # R. J. Mathar, Dec 15 2015
-
Mathematica
Table[Ceiling[(1/(Ceiling[n/2] + 1)) Binomial[n, Floor[n/2]]], {n, 0, 49}] (* Alonso del Arte, Oct 30 2019 *)
-
SageMath
[ceil(binomial(n,int(n/2))/((n+3)//2)) for n in range(51)] # G. C. Greubel, Jan 05 2024