cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028304 a(n) = ceiling( binomial(n, floor(n/2))/(1 + ceiling(n/2)) ) (interpolates between Catalan numbers).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 7, 14, 21, 42, 66, 132, 215, 429, 715, 1430, 2431, 4862, 8398, 16796, 29393, 58786, 104006, 208012, 371450, 742900, 1337220, 2674440, 4847423, 9694845, 17678835, 35357670, 64822395, 129644790, 238819350, 477638700, 883631595, 1767263190, 3282060210
Offset: 0

Views

Author

Keywords

References

  • D. Miklos et al., eds., Combinatorics, Paul ErdÅ‘s is Eighty, Bolyai Math. Soc., 1993, Vol. 1, p. 101.

Crossrefs

Programs

  • Magma
    [Ceiling(Binomial(n,Floor(n/2))/Floor((n+3)/2)): n in [0..50]]; // G. C. Greubel, Jan 05 2024
    
  • Maple
    A028304 := proc(n)
        A001405(n)/(ceil(n/2)+1) ;
        ceil(%) ;
    end proc: # R. J. Mathar, Dec 15 2015
  • Mathematica
    Table[Ceiling[(1/(Ceiling[n/2] + 1)) Binomial[n, Floor[n/2]]], {n, 0, 49}] (* Alonso del Arte, Oct 30 2019 *)
  • SageMath
    [ceil(binomial(n,int(n/2))/((n+3)//2)) for n in range(51)] # G. C. Greubel, Jan 05 2024

Formula

a(2*n) = A000108(n), a(2*n+1) = A130380(n+1). - R. J. Mathar, Dec 15 2015
a(n) = ceiling(A001405(n)/A004526(n+3)). - G. C. Greubel, Jan 05 2024