cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028305 Triangle of numbers of permutations eliminating just k cards out of n in game of Mousetrap.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 2, 0, 2, 9, 6, 3, 0, 6, 44, 31, 19, 11, 0, 15, 265, 180, 105, 54, 32, 0, 84, 1854, 1255, 771, 411, 281, 138, 0, 330, 14833, 9949, 6052, 3583, 2057, 1366, 668, 0, 1812, 133496, 89162, 55340, 32135, 19026, 12685, 6753, 4305, 0, 9978, 1334961, 886837, 547922, 331930, 193538, 117323, 79291, 45536, 25959, 0, 65503
Offset: 0

Views

Author

Keywords

Comments

Triangle T(n,k), 0 <= k <= n

Examples

			Triangle begins:
     1,
     0,    1,
     1,    0,   1,
     2,    2,   0,   2,
     9,    6,   3,   0,   6,
    44,   31,  19,  11,   0,  15,
   265,  180, 105,  54,  32,   0, 84,
  1854, 1255, 771, 411, 281, 138,  0, 330,
  ...
		

References

  • R. K. Guy, Unsolved Problems Number Theory, E37.
  • R. K. Guy and R. J. Nowakowski, "Mousetrap," in D. Miklos, V. T. Sos and T. Szonyi, eds., Combinatorics, Paul ErdÅ‘s is Eighty. Bolyai Society Math. Studies, Vol. 1, pp. 193-206, 1993.
  • S. Washburn, T. Marlowe and C. T. Ryan, Discrete Mathematics, Addison-Wesley, 1999, page 326.

Crossrefs

Programs

  • Maple
    A028305:=proc(n)
      local P, j, M, K, A, i, K_neu, k, m;
      P:=combinat[permute](n):
      for j from 0 to n do
        M[j]:=0:
      od:
      for j from 1 to nops(P) do
        K:=P[j]:
        A:=[]:
        for i while nops(K)>0 do
          K_neu:=[]:
          for k from 1 to n do
            m:=nops(K);
            if k mod m = 0 then
              if K[m]=k then
                K_neu:=[seq(K[j],j=1..m-1)];
                A:=[op(A),k];
              else next;
              fi;
            else
              if K[k mod m]=k then
                K_neu:=[seq(K[j],j=(k mod m)+1..m),seq(K[j],j=1..(k mod m)-1)];
                A:=[op(A),k];
              else next;
              fi;
            fi;
            if nops(K_neu)<>0 then break; fi;
          od;
          if nops(K_neu)<>0 then
            K:=K_neu;
          else break;
          fi;
        od:
        M[nops(A)]:=M[nops(A)]+1;
      od:
      seq(M[j],j=0..n);
    end:
    # Martin Renner, Sep 03 2015

Formula

T(n,0) = A000166(n), T(n,1) = A007710(n), T(n,n-1) = A000004(n) = 0, T(n,n) = A007709(n).

Extensions

a(36)-a(65) from Martin Renner, Sep 02 2015