A028305 Triangle of numbers of permutations eliminating just k cards out of n in game of Mousetrap.
1, 0, 1, 1, 0, 1, 2, 2, 0, 2, 9, 6, 3, 0, 6, 44, 31, 19, 11, 0, 15, 265, 180, 105, 54, 32, 0, 84, 1854, 1255, 771, 411, 281, 138, 0, 330, 14833, 9949, 6052, 3583, 2057, 1366, 668, 0, 1812, 133496, 89162, 55340, 32135, 19026, 12685, 6753, 4305, 0, 9978, 1334961, 886837, 547922, 331930, 193538, 117323, 79291, 45536, 25959, 0, 65503
Offset: 0
Examples
Triangle begins: 1, 0, 1, 1, 0, 1, 2, 2, 0, 2, 9, 6, 3, 0, 6, 44, 31, 19, 11, 0, 15, 265, 180, 105, 54, 32, 0, 84, 1854, 1255, 771, 411, 281, 138, 0, 330, ...
References
- R. K. Guy, Unsolved Problems Number Theory, E37.
- R. K. Guy and R. J. Nowakowski, "Mousetrap," in D. Miklos, V. T. Sos and T. Szonyi, eds., Combinatorics, Paul Erdős is Eighty. Bolyai Society Math. Studies, Vol. 1, pp. 193-206, 1993.
- S. Washburn, T. Marlowe and C. T. Ryan, Discrete Mathematics, Addison-Wesley, 1999, page 326.
Links
- Georg Fischer, Table of n, a(n) for n = 0..107 (terms 36..65 from Martin Renner)
- Arthur Cayley, On the game of Mousetrap, in: Quarterly Journal of Pure and Applied Mathematics 15 (1878), p. 8-10.
- R. K. Guy and R. J. Nowakowski, Mousetrap, Preprint, Feb 10 1993 [Annotated scanned copy]
- Adolph Steen, Some formulas respecting the game of Mousetrap, Quarterly Journal of Pure and Applied Mathematics 15 (1878), p. 230-241.
Programs
-
Maple
A028305:=proc(n) local P, j, M, K, A, i, K_neu, k, m; P:=combinat[permute](n): for j from 0 to n do M[j]:=0: od: for j from 1 to nops(P) do K:=P[j]: A:=[]: for i while nops(K)>0 do K_neu:=[]: for k from 1 to n do m:=nops(K); if k mod m = 0 then if K[m]=k then K_neu:=[seq(K[j],j=1..m-1)]; A:=[op(A),k]; else next; fi; else if K[k mod m]=k then K_neu:=[seq(K[j],j=(k mod m)+1..m),seq(K[j],j=1..(k mod m)-1)]; A:=[op(A),k]; else next; fi; fi; if nops(K_neu)<>0 then break; fi; od; if nops(K_neu)<>0 then K:=K_neu; else break; fi; od: M[nops(A)]:=M[nops(A)]+1; od: seq(M[j],j=0..n); end: # Martin Renner, Sep 03 2015
Extensions
a(36)-a(65) from Martin Renner, Sep 02 2015
Comments