A028338 Triangle of coefficients in expansion of (x+1)*(x+3)*...*(x + 2n - 1) in rising powers of x.
1, 1, 1, 3, 4, 1, 15, 23, 9, 1, 105, 176, 86, 16, 1, 945, 1689, 950, 230, 25, 1, 10395, 19524, 12139, 3480, 505, 36, 1, 135135, 264207, 177331, 57379, 10045, 973, 49, 1, 2027025, 4098240, 2924172, 1038016, 208054, 24640, 1708, 64, 1, 34459425, 71697105, 53809164, 20570444, 4574934, 626934, 53676, 2796, 81, 1
Offset: 0
Examples
G.f. for n = 4: (x + 1)*(x + 3)*(x + 5)*(x + 7) = 105 + 176*x + 86*x^2 + 16*x^3 + x^4. The triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 0: 1 1: 1 1 2: 3 4 1 3: 15 23 9 1 4: 105 176 86 16 1 5: 945 1689 950 230 25 1 6: 10395 19524 12139 3480 505 36 1 7: 135135 264207 177331 57379 10045 973 49 1 8: 2027025 4098240 2924172 1038016 208054 24640 1708 64 1 9: 34459425 71697105 53809164 20570444 4574934 626934 53676 2796 81 1 ... row n = 10: 654729075 1396704420 1094071221 444647600 107494190 16486680 1646778 106800 4335 100 1. ... reformatted and extended. - _Wolfdieter Lang_, May 09 2017 O.g.f.s of diagonals d >= 0: D(2, x) = (3 + 8*x + x^2)/(1 - x)^5 generating [3, 23, 86, ...] = A024196(n+1), from the row d=2 entries of A288875 [3, 8, 1]. - _Wolfdieter Lang_, Jul 21 2017 Boas-Buck recurrence for column k=2 and n=4: T(4, 2) = (4!/2)*(2*(1+4*(5/12))*T(2,2)/2! + 1*(1 + 4*(1/2))*T(3,2)/3!) = (4!/2)*(8/3*1 + 3*9/3!) = 86. - _Wolfdieter Lang_, Aug 11 2017
Links
- T. D. Noe, Rows n=0..50 of triangle, flattened
- Priyavrat Deshpande, Krishna Menon, and Anurag Singh, A combinatorial statistic for labeled threshold graphs, arXiv:2103.03865 [math.CO], 2021.
- Thomas Godland and Zakhar Kabluchko, Projections and angle sums of permutohedra and other polytopes, arXiv:2009.04186 [math.MG], 2020.
- Thomas Godland and Zakhar Kabluchko, Projections and Angle Sums of Belt Polytopes and Permutohedra, Res. Math. (2023) Vol. 78, Art. No. 140.
- Z. Kabluchko, V. Vysotsky, and D. Zaporozhets, Convex hulls of random walks, hyperplane arrangements, and Weyl chambers, arXiv preprint arXiv:1510.04073 [math.PR], 2015.
- Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
- Bruce E. Sagan and Joshua P. Swanson, q-Stirling numbers in type B, arXiv:2205.14078 [math.CO], 2022.
Programs
-
Maple
nmax:=8; for n from 0 to nmax do a(n, 0) := doublefactorial(2*n-1) od: for n from 0 to nmax do a(n, n) := 1 od: for n from 2 to nmax do for m from 1 to n-1 do a(n, m) := (2*n-1)*a(n-1, m) + a(n-1, m-1) od; od: seq(seq(a(n, m), m=0..n), n=0..nmax); # Johannes W. Meijer, Jun 08 2009, revised Nov 25 2012
-
Mathematica
T[n_, k_] := Sum[(-2)^(n-i) Binomial[i, k] StirlingS1[n, i], {i, k, n}] (* Woodhouse *) Join[{1},Flatten[Table[CoefficientList[Expand[Times@@Table[x+i,{i,1,2n+1,2}]],x],{n,0,10}]]] (* Harvey P. Dale, Jan 29 2013 *)
Formula
Triangle T(n, k), read by rows, given by [1, 2, 3, 4, 5, 6, 7, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 20 2005
T(n, k) = Sum_{i=k..n} (-2)^(n-i) * binomial(i, k) * s(n, i) where s(n, k) are signed Stirling numbers of the first kind. - Francis Woodhouse (fwoodhouse(AT)gmail.com), Nov 18 2005
G.f. of row polynomials in y: 1/(1-(x+x*y)/(1-2*x/(1-(3*x+x*y)/(1-4*x/(1-(5*x+x*y)/(1-6*x*y/(1-... (continued fraction). - Paul Barry, Feb 07 2009
T(n, m) = (2*n-1)*T(n-1,m) + T(n-1,m-1) with T(n, 0) = (2*n-1)!! and T(n, n) = 1. - Johannes W. Meijer, Jun 08 2009
From Wolfdieter Lang, May 09 2017: (Start)
E.g.f. of row polynomials in y: (1/sqrt(1-2*x))*exp(-y*log(sqrt(1-2*x))) = exp(-(1+y)*log(sqrt(1-2*x))) = 1/sqrt(1-2*x)^(1+y).
E.g.f. of column m sequence: (1/sqrt(1-2*x))* (-log(sqrt(1-2*x)))^m/m!. For the special Sheffer, also known as exponential Riordan array, see a comment above. (End)
Boas-Buck type recurrence for column sequence k: T(n, k) = (n!/(n - k)) * Sum_{p=k..n-1} 2^(n-1-p)*(1 + 2*k*beta(n-1-p))*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/A002209(k+1). See a comment and references in A286718. - Wolfdieter Lang, Aug 09 2017
Comments