cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028594 Expansion of (theta_3(q) * theta_3(q^7) + theta_2(q) * theta_2(q^7))^2 in powers of q.

Original entry on oeis.org

1, 4, 12, 16, 28, 24, 48, 4, 60, 52, 72, 48, 112, 56, 12, 96, 124, 72, 156, 80, 168, 16, 144, 96, 240, 124, 168, 160, 28, 120, 288, 128, 252, 192, 216, 24, 364, 152, 240, 224, 360, 168, 48, 176, 336, 312, 288, 192
Offset: 0

Views

Author

Keywords

Comments

Theta series of square of Kleinian lattice Z[ (-1+sqrt(-7))/2 ].
The Gram matrix of the lattice is denoted by A in Parry 1979 on page 163.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Ramanujan's Eisenstein series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).

Examples

			G.f. = 1 + 4*q + 12*q^2 + 16*q^3 + 28*q^4 + 24*q^5 + 48*q^6 + 4*q^7 + 60*q^8 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag; see p. 467, Entry 5(i).

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma0(7), 2), 48) [1]; /* Michael Somos, Jun 12 2014 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[ n == 0], 4 Sum[ If[ Mod[ d, 7] > 0, d, 0], {d, Divisors @ n }]]; (* Michael Somos, Jun 12 2014 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^7] + EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^7])^2, {q, 0, n}]; (* Michael Somos, Jun 12 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, 4 * sigma( n / 7^valuation( n, 7)))}; /* Michael Somos, Oct 07 2005 */
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * qfrep( [2, 1, 0, 0; 1, 4, 0, 0; 0, 0, 2 ,1 ; 0, 0, 1, 4], n, 1)[n])}; /* Michael Somos, Oct 07 2005 */
    
  • PARI
    {a(n) = if( n<1, n==0, 4 * sumdiv( n, d, d * kronecker( 49, d)))}; /* Michael Somos, Mar 22 2012 */
    
  • Sage
    ModularForms( Gamma0(7), 2, prec=48).0; # Michael Somos, Jun 12 2014
    

Formula

Expansion of (phi(q) * phi(q^7) + 4 * q^2 * psi(q^2) * psi(q^14))^2 in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Jul 21 2012
Expansion of (7 * P(q^7) - P(q)) / 6 where P() is a Ramanujan Eisenstein Series. - Michael Somos, Mar 22 2012
a(n) = 4 * b(n) where b(n) is multiplicative with b(p^e) = 1, if p=7, b(p^e) = (p^(e+1) - 1) / (p - 1) otherwise.
G.f. is a period 1 Fourier series which satisfies f(-1 / (7 t)) = 7 (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Mar 22 2012
G.f.: (theta_3(q) * theta_3(q^7) + theta_2(q) * theta_2(q^7))^2.
G.f.: 1 + 4 * (Sum_{k>0} Kronecker( 49, k) * k * x^k / (1 - x^k)). - Michael Somos, Mar 22 2012
G.f.: 1 + 4 * (Sum_{k>0} x^k / (1 - x^k)^2 - 7 * x^(7*k) / (1 - x^(7*k))^2). - Michael Somos, Mar 22 2012
Convolution square of A002652. a(n) = 4 * A113957(n) unless n=0. - Michael Somos, Jul 21 2012