cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028610 Expansion of (theta_3(z)*theta_3(11z) + theta_2(z)*theta_2(11z))^2.

Original entry on oeis.org

1, 4, 4, 8, 20, 16, 32, 16, 36, 28, 40, 4, 64, 40, 64, 56, 68, 40, 100, 48, 104, 80, 4, 56, 144, 68, 88, 104, 128, 72, 176, 88, 164, 8, 136, 112, 212, 96, 144, 128, 216, 88, 224, 96, 20, 184, 176, 128, 304, 132, 236
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 4*x + 4*x^2 + 8*x^3 + 20*x^4 + 16*x^5 + 32*x^6 + 16*x^7 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(11), 2), 51); A[1] + 4*A[2] + 4*A[3] + 8*A[4] + 20*A[5] + 16*A[6] + 32*A[7] + 16*A[8] + 36*A[9] + 28*A[10]; /* Michael Somos, Apr 21 2015 */
  • Maple
    S:= series((JacobiTheta3(0,z)*JacobiTheta3(0,z^11)+JacobiTheta2(0,z)*JacobiTheta2(0,z^11))^2, z, 101):
    seq(coeff(S,z,j),j=0..100); # Robert Israel, Jan 21 2018
  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^11] + EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^11])^2, {q, 0, n}]; (* Michael Somos, Apr 21 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 + 2 * x * Ser(qfrep( [ 2, 1; 1, 6], n, 1)))^2, n))}; /* Michael Somos, Apr 21 2015 */
    

Formula

Convolution square of A028609. - Michael Somos, Mar 22 2012
Expansion of (phi(x) * phi(x^11) = 4 * x^3 * psi(x^2) * psi(x^22))^2 in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Apr 21 2015
Convolution with A032442 is A128525. - Michael Somos, Apr 21 2015