cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A028665 Galois numbers for p=3; order of group AGL(n,3).

Original entry on oeis.org

1, 6, 432, 303264, 1965150720, 115562653240320, 61330486826476707840, 293207687471256968260730880, 12619705781992895315056778792140800, 4888884191426907931326620039839052385484800, 17046196453240220939126401085378073952125928970649600
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*3^#2 (3^#2-1)&, 1, Range[ 20 ]]
    a[n_] := 3^n * Product[3^n - 3^k, {k, 0, n-1}]; Array[a, 11, 0] (* Amiram Eldar, Jul 12 2025 *)
  • PARI
    a(n) = 3^n * prod(k = 0, n-1, 3^n - 3^k); \\ Amiram Eldar, Jul 12 2025

Formula

a(n) = 3^n * Product_{k=0..n-1} (3^n - 3^k).
a(n) ~ c * 3^(n^2+n), where c = A100220. - Amiram Eldar, Jul 12 2025

A028667 Galois numbers for p=5; order of group AGL(n,5).

Original entry on oeis.org

1, 20, 12000, 186000000, 72540000000000, 708171750000000000000, 172882428468750000000000000000, 1055177097007236328125000000000000000000, 161006835289591673217773437500000000000000000000000, 614192019859664935862872123718261718750000000000000000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*5^#2 (5^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 5^n * Product[5^n - 5^k, {k, 0, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 12 2025 *)
  • PARI
    a(n) = 5^n * prod(k = 0, n-1, 5^n - 5^k); \\ Amiram Eldar, Jul 12 2025

Formula

a(n) = 5^n * Product_{k=0..n-1} (5^n - 5^k).
a(n) ~ c * 5^(n^2+n), where c = A100222. - Amiram Eldar, Jul 12 2025

A028673 Galois numbers for p=11; order of group AGL(n,11).

Original entry on oeis.org

1, 110, 1597200, 2827411356000, 606039338269189440000, 15719002038355567350156912000000, 49332934203739383347738694321468865920000000, 18734172592683683919731709047397914403374452828934400000000, 860830165835516295815608223447061872667128267986790628055380728832000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*11^#2 (11^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 11^n * Product[11^n - 11^k, {k, 0, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 12 2025 *)
  • PARI
    a(n) = 11^n * prod(k = 0, n-1, 11^n - 11^k); \\ Amiram Eldar, Jul 12 2025

Formula

a(n) = 11^n * Product_{k=0..n-1} (11^n - 11^k).
a(n) ~ c * 11^(n^2+n), where c = A132267. - Amiram Eldar, Jul 12 2025

A028675 Galois numbers for p=13; order of group AGL(n,13).

Original entry on oeis.org

1, 156, 4429152, 21368939889024, 17430690424387037091840, 2402962221899462961810522363863040, 55984406793280086114756507719510983331312762880, 220431677762305366198023742325712037545142450383991425548943360
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*13^#2 (13^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 13^n * Product[13^n - 13^k, {k, 0, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 12 2025 *)
  • PARI
    a(n) = 13^n * prod(k = 0, n-1, 13^n - 13^k); \\ Amiram Eldar, Jul 12 2025

Formula

a(n) = 13^n * Product_{k=0..n-1} (13^n - 13^k).
a(n) ~ c * 13^(n^2+n), where c = Product_{k>=1} (1 - 1/13^k) = 0.9171624725409... . - Amiram Eldar, Jul 12 2025

A028679 Galois numbers for p=17; order of group AGL(n,17).

Original entry on oeis.org

1, 272, 22639104, 546341708980224, 3811101610741578352558080, 7683152190027081335646892427952783360, 4476375132477699824408564935442752007430598683525120, 753722313834315665863920705126825485467891025286555525186004419870720
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*17^#2 (17^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 17^n * Product[17^n - 17^k, {k, 0, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 12 2025 *)
  • PARI
    a(n) = 17^n * prod(k = 0, n-1, 17^n - 17^k); \\ Amiram Eldar, Jul 12 2025

Formula

a(n) = 17^n * Product_{k=0..n-1} (17^n - 17^k).
a(n) ~ c * 17^(n^2+n), where c = Product_{k>=1} (1 - 1/17^k) = 0.937716969709... . - Amiram Eldar, Jul 12 2025

A028681 Galois numbers for p=19; order of group AGL(n,19).

Original entry on oeis.org

1, 342, 44446320, 2090711424299040, 35507456811518119000588800, 217698482437446717711443628892666137600, 481835288795046555242155407852974930874821656470528000, 384989616762670041552999657317996225002975219911214265653201810077696000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*19^#2 (19^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 19^n * Product[19^n - 19^k, {k, 0, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 12 2025 *)
  • PARI
    a(n) = 19^n * prod(k = 0, n-1, 19^n - 19^k); \\ Amiram Eldar, Jul 12 2025

Formula

a(n) = 19^n * Product_{k=0..n-1} (19^n - 19^k).
a(n) ~ c * 19^(n^2+n), where c = Product_{k>=1} (1 - 1/19^k) = 0.944598742929... . - Amiram Eldar, Jul 12 2025

A028685 Galois numbers for p=23; order of group AGL(n,23).

Original entry on oeis.org

1, 506, 141331872, 20920469730667584, 1638296742744745305180456960, 67868907839960050279986415163868117749760, 1487321615877089920298398794877451264100990832314711736320
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*23^#2 (23^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 23^n * Product[23^n - 23^k, {k, 0, n-1}]; Array[a, 7, 0] (* Amiram Eldar, Jul 12 2025 *)
  • PARI
    a(n) = 23^n * prod(k = 0, n-1, 23^n - 23^k); \\ Amiram Eldar, Jul 12 2025

Formula

a(n) = 23^n * Product_{k=0..n-1} (23^n - 23^k).
a(n) ~ c * 23^(n^2+n), where c = Product_{k>=1} (1 - 1/23^k) = 0.954631535623... . - Amiram Eldar, Jul 12 2025
Showing 1-7 of 7 results.