cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A028667 Galois numbers for p=5; order of group AGL(n,5).

Original entry on oeis.org

1, 20, 12000, 186000000, 72540000000000, 708171750000000000000, 172882428468750000000000000000, 1055177097007236328125000000000000000000, 161006835289591673217773437500000000000000000000000, 614192019859664935862872123718261718750000000000000000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*5^#2 (5^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 5^n * Product[5^n - 5^k, {k, 0, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 12 2025 *)
  • PARI
    a(n) = 5^n * prod(k = 0, n-1, 5^n - 5^k); \\ Amiram Eldar, Jul 12 2025

Formula

a(n) = 5^n * Product_{k=0..n-1} (5^n - 5^k).
a(n) ~ c * 5^(n^2+n), where c = A100222. - Amiram Eldar, Jul 12 2025

A028669 Galois numbers for p=7; order of group AGL(n,7).

Original entry on oeis.org

1, 42, 98784, 11587955904, 66774437101209600, 18861003469034659931443200, 261058346935768909875766027257446400, 177055579258883302762565632026325003745732198400, 5884074751780775313126615757455645503567996488345394872320000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*7^#2 (7^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 7^n * Product[7^n - 7^k, {k, 0, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 12 2025 *)
  • PARI
    a(n) = 7^n * prod(k = 0, n-1, 7^n - 7^k); \\ Amiram Eldar, Jul 12 2025

Formula

a(n) = 7^n * Product_{k=0..n-1} (7^n - 7^k).
a(n) ~ c * 7^(n^2+n), where c = A132035. - Amiram Eldar, Jul 12 2025

A028673 Galois numbers for p=11; order of group AGL(n,11).

Original entry on oeis.org

1, 110, 1597200, 2827411356000, 606039338269189440000, 15719002038355567350156912000000, 49332934203739383347738694321468865920000000, 18734172592683683919731709047397914403374452828934400000000, 860830165835516295815608223447061872667128267986790628055380728832000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*11^#2 (11^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 11^n * Product[11^n - 11^k, {k, 0, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 12 2025 *)
  • PARI
    a(n) = 11^n * prod(k = 0, n-1, 11^n - 11^k); \\ Amiram Eldar, Jul 12 2025

Formula

a(n) = 11^n * Product_{k=0..n-1} (11^n - 11^k).
a(n) ~ c * 11^(n^2+n), where c = A132267. - Amiram Eldar, Jul 12 2025

A028675 Galois numbers for p=13; order of group AGL(n,13).

Original entry on oeis.org

1, 156, 4429152, 21368939889024, 17430690424387037091840, 2402962221899462961810522363863040, 55984406793280086114756507719510983331312762880, 220431677762305366198023742325712037545142450383991425548943360
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*13^#2 (13^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 13^n * Product[13^n - 13^k, {k, 0, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 12 2025 *)
  • PARI
    a(n) = 13^n * prod(k = 0, n-1, 13^n - 13^k); \\ Amiram Eldar, Jul 12 2025

Formula

a(n) = 13^n * Product_{k=0..n-1} (13^n - 13^k).
a(n) ~ c * 13^(n^2+n), where c = Product_{k>=1} (1 - 1/13^k) = 0.9171624725409... . - Amiram Eldar, Jul 12 2025

A028679 Galois numbers for p=17; order of group AGL(n,17).

Original entry on oeis.org

1, 272, 22639104, 546341708980224, 3811101610741578352558080, 7683152190027081335646892427952783360, 4476375132477699824408564935442752007430598683525120, 753722313834315665863920705126825485467891025286555525186004419870720
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*17^#2 (17^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 17^n * Product[17^n - 17^k, {k, 0, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 12 2025 *)
  • PARI
    a(n) = 17^n * prod(k = 0, n-1, 17^n - 17^k); \\ Amiram Eldar, Jul 12 2025

Formula

a(n) = 17^n * Product_{k=0..n-1} (17^n - 17^k).
a(n) ~ c * 17^(n^2+n), where c = Product_{k>=1} (1 - 1/17^k) = 0.937716969709... . - Amiram Eldar, Jul 12 2025

A028681 Galois numbers for p=19; order of group AGL(n,19).

Original entry on oeis.org

1, 342, 44446320, 2090711424299040, 35507456811518119000588800, 217698482437446717711443628892666137600, 481835288795046555242155407852974930874821656470528000, 384989616762670041552999657317996225002975219911214265653201810077696000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*19^#2 (19^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 19^n * Product[19^n - 19^k, {k, 0, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 12 2025 *)
  • PARI
    a(n) = 19^n * prod(k = 0, n-1, 19^n - 19^k); \\ Amiram Eldar, Jul 12 2025

Formula

a(n) = 19^n * Product_{k=0..n-1} (19^n - 19^k).
a(n) ~ c * 19^(n^2+n), where c = Product_{k>=1} (1 - 1/19^k) = 0.944598742929... . - Amiram Eldar, Jul 12 2025

A028685 Galois numbers for p=23; order of group AGL(n,23).

Original entry on oeis.org

1, 506, 141331872, 20920469730667584, 1638296742744745305180456960, 67868907839960050279986415163868117749760, 1487321615877089920298398794877451264100990832314711736320
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*23^#2 (23^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 23^n * Product[23^n - 23^k, {k, 0, n-1}]; Array[a, 7, 0] (* Amiram Eldar, Jul 12 2025 *)
  • PARI
    a(n) = 23^n * prod(k = 0, n-1, 23^n - 23^k); \\ Amiram Eldar, Jul 12 2025

Formula

a(n) = 23^n * Product_{k=0..n-1} (23^n - 23^k).
a(n) ~ c * 23^(n^2+n), where c = Product_{k>=1} (1 - 1/23^k) = 0.954631535623... . - Amiram Eldar, Jul 12 2025

A028689 Sorted Galois numbers.

Original entry on oeis.org

1, 2, 6, 20, 24, 42, 110, 156, 272, 342, 432, 506, 812, 930, 1332, 1344, 1640, 1806, 2162, 2756, 3422, 3660, 4422, 4970, 5256, 6162, 6806, 7832, 9312, 10100, 10506, 11342, 11772, 12000, 12656, 16002, 17030, 18632, 19182, 22052, 22650, 24492
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A028665, ..., A028691.

Extensions

Offset set to 1 by Alois P. Heinz, Nov 07 2018

A028690 Sorted Galois and Pseudo-Galois numbers.

Original entry on oeis.org

1, 2, 6, 12, 20, 24, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 432, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1344, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

Offset changed to 1 by Alois P. Heinz, Nov 07 2018
Showing 1-9 of 9 results.