A028670 Pseudo Galois numbers for d=8; order of group AGL(n,2^3).
1, 56, 225792, 59074412544, 990862210530017280, 1063897728694258113372487680, 73110216322082119251081045710796226560, 321541978498155599038038914825594113520368216965120, 90506015514687373224170805357005639908589558859612764874001612800
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..33
Crossrefs
Programs
-
Mathematica
FoldList[ #1*8^#2 (8^#2-1)&, 1, Range[ 20 ] ] a[n_] := 8^n * Product[8^n - 8^k, {k, 0, n-1}]; Array[a, 9, 0] (* Amiram Eldar, Jul 13 2025 *)
-
PARI
a(n) = 8^n * prod(k = 0, n-1, 8^n - 8^k); \\ Amiram Eldar, Jul 13 2025
Formula
a(n) = 8^n * Product_{k=0..n-1} (8^n - 8^k).
a(n) ~ c * 8^(n^2+n), where c = A132036. - Amiram Eldar, Jul 13 2025